首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Wang JP  Hsu KC  Chiang TY 《Molecular ecology》2000,9(10):1483-1494
Nucleotide sequences of 3' end of the cytochrome b gene, tRNA genes, D-loop control region, and the 5' end of the 12S rRNA of mitochondrial DNA (mtDNA) were used to assess the genetic and phylogeographic structure of Acrossocheilus paradoxus populations, a Cyprinidae fish of Taiwan. A hierarchical examination of populations in 12 major streams from three geographical regions using an analysis of molecular variance (AMOVA) indicates high genetic differentiation both among populations (PhiST = 0.511, P < 0.001) and among regions (PhiCT = 0.368, P < 0.001). Limited migration largely contributed to the genetic differentiation. High nucleotide diversity (1.13%) and haplotype diversity (0.80%) were detected among populations. The degree of genetic differentiation was correlated with geographical distance between populations, a result consistent with the one-dimensional stepping stone models. A neighbour-joining tree recovered by (DAMBE) supports the pattern of isolation by distance and reveals a closer relationship between populations of the central and southern regions. A minimum spanning network based on nucleotide substitutions reflected migration routes from populations of the central region to the northern and southern regions, respectively. Postglacial colonization and expansion can explain the phylogeographical pattern. Single and ancient migration events may have allowed the northern region to attain the monophyly of mtDNA alleles. In contrast, most populations within geographical regions are either paraphyletic or polyphyletic due to the relatively shorter time period for coalescence. Both low haplotype number and genetic variability suggest a bottleneck event in the Chingmei population of northern Taiwan. Based on coalescence theory, the monophyly of the Tungkang population of the southern region may be associated with a founder event.  相似文献   

2.
Mangrove tree species form ecologically and economically important forests along the tropical and subtropical coastlines of the world. Although low intrapopulation genetic diversity and high interpopulation genetic differentiation have been detected in most mangrove tree species, no direct investigation of pollen and propagule dispersal through paternity and/or parentage analysis and spatial genetic structure within populations has been conducted. We surveyed the mating system, pollen and propagule dispersal, and spatial genetic structure in a natural population of Kandelia candel, one of the typical viviparous mangrove tree species, using nuclear and chloroplast microsatellite markers. High diversity and outcrossing rates were observed. Paternity and parentage analysis and modelling estimations revealed the presence of an extremely short-distance component of pollen and propagule dispersal (pollen: 15.2 ± 14.9 m (SD) by paternity analysis and 34.4 m by modelling; propagule: 9.4 ± 13.8 m (SD) by parentage analysis, and 18.6 m by modelling). Genetic structure was significant at short distances, and a clumped distribution of chloroplast microsatellite genotypes was seen in K. candel adults. We conclude that the K. candel population was initiated by limited propagule founders from outside by long-distance dispersal followed by limited propagule dispersal from the founders, resulting in a half-sib family structure.  相似文献   

3.
  总被引:30,自引:0,他引:30  
Plants offer excellent models to investigate how gene flow shapes the organization of genetic diversity. Their three genomes can have different modes of transmission and will hence experience varying levels of gene flow. We have compiled studies of genetic structure based on chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear markers in seed plants. Based on a data set of 183 species belonging to 103 genera and 52 families, we show that the precision of estimates of genetic differentiation (G(ST)) used to infer gene flow is mostly constrained by the sampling of populations. Mode of inheritance appears to have a major effect on G(ST). Maternally inherited genomes experience considerably more subdivision (median value of 0.67) than paternally or biparentally inherited genomes (approximately 0.10). G(ST) at cpDNA and mtDNA markers covary narrowly when both genomes are maternally inherited, whereas G(ST) at paternally and biparentally inherited markers also covary positively but more loosely and G(ST) at maternally inherited markers are largely independent of values based on nuclear markers. A model-based gross estimate suggests that, at the rangewide scale, historical levels of pollen flow are generally at least an order of magnitude larger than levels of seed flow (median of the pollen-to-seed migration ratio: 17) and that pollen and seed gene flow vary independently across species. Finally, we show that measures of subdivision that take into account the degree of similarity between haplotypes (N(ST) or R(ST)) make better use of the information inherent in haplotype data than standard measures based on allele frequencies only.  相似文献   

4.
    
Ailanthus altissima (Mill.) Swingle, a temperate tree species, has a wide distribution in China. To infer its refugia and patterns of migration during past climatic changes in China, genetic variations among different populations were studied. Gene sequences of three chloroplast DNA spacer regions, psbA-trnH, trnL-trnF, andtrnD-trnT, were obtained from 440 individuals of 44 populations. The distribution of haplotype and the relationships among them were investigated by haplotype network. In addition, the genetic diversity of the sampled regions was inferred, and the biogeographic history was also reconstructed. Twelve haplotypes were identified, among which, five were unique. The phylogenetic analysis and geographical distribution of haplotypes indicate that multiple glacial refugia existed in mainland China during the Quaternary oscillations. Due to the combined effects of contiguous range expansion and allopatric fragmentation, significant genetic structure was not found in this study. Based on biogeographic and demographic analysis, three main dispersal routes were identified for the major haplotypes, whereas others were more likely localized demographic expansion.  相似文献   

5.
Assessing species' range-wide cytoplasmic diversity provides valuable insights regarding their dispersal and adaptive potential in a changing environment. Transcontinental chloroplast (cpDNA) and mitochondrial DNA (mtDNA) population structures were compared to identify putative ancestral and new cytoplasmic genome assemblages in black spruce (Picea mariana), a North American boreal conifer. Mean within-population diversity and allelic richness for cpSSR markers were 0.80 and 4.21, respectively, and diminished westward. Population differentiation based on G(ST) was lower for cpDNA than for mtDNA (G(ST) =0.104 and 0.645, respectively) but appeared comparable when estimated using Jost differentiation index (D=0.459 and 0.537, respectively). Further analyses resulted in the delineation of at least three genetically distinct cpDNA lineages partially congruent with those inferred from mtDNA data, which roughly corresponded to western, central and eastern Canada. Additionally, the patterns of variation in Alaska for both cpDNA and mtDNA markers suggested that black spruce survived the last glacial maximum in this northern region. The range-wide comparison of the geographic extent of cytoplasmic DNA lineages revealed that extensive pollen gene flow between ancestral lineages occurred preferentially from west to east during the postglacial expansion of the species, while seed-mediated gene flow remained geographically restricted. This differential gene flow promoted intraspecific cytoplasmic capture that generated new assemblages of cpDNA and mtDNA genomes during the Holocene. Hence, black spruce postglacial colonization unexpectedly resulted in an increase in genetic diversity with possible adaptive consequences.  相似文献   

6.
How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed‐dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3–4) and paternally inherited, pollen‐ and seed‐dispersed chloroplast DNA (cpDNA) (rpl16 and trnS‐trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (GST = 0.738, NST = 0.771) indicating low levels of seed‐based gene flow and significant phylogeographical structure (NST > GST, P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north–central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north‐central part of the species’ range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north‐central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among‐population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.  相似文献   

7.
    
We characterized the pattern and magnitude of phylogeographical variation among breeding populations of a long-distance migratory bird, the Wilson's warbler (Wilsonia pusilla), and used this information to assess the utility of mtDNA markers for assaying demographic connectivity between breeding and overwintering regions. We found a complex pattern of population differentiation in mitochondrial DNA (mtDNA) variation among populations across the breeding range. Individuals from eastern North America were differentiated from western individuals and the eastern haplotypes formed a distinct, well-supported cluster. The more diverse western group contained haplotype clusters with significant geographical structuring, but there was also broad mixing of haplotype groups such that no haplotype groups were population specific and the predominance of rare haplotypes limited the utility of frequency-based assignment techniques. Nonetheless, the existence of geographically diagnosable eastern vs. western haplotypes enabled us to characterize the distribution of these two groups across 14 overwintering locations. Western haplotypes were present at much higher frequencies than eastern haplotypes at most overwintering sites. Application of this mtDNA-based method of linking breeding and overwintering populations on a finer geographical scale was precluded by the absence of population-specific markers and by insufficient haplotype sorting among western breeding populations. Our results suggest that because migratory species such as the Wilson's warbler likely experienced extensive gene flow among regional breeding populations, molecular markers will have the greatest utility for characterizing breeding-overwintering connectivity at a broad geographical scale.  相似文献   

8.
    
Lin TP  Chuang WJ  Huang SS  Hwang SY 《Molecular ecology》2003,12(10):2661-2668
Variations in mitochondrial DNA in Cyclobalanopsis glauca (Thunb. ex Murray) Oerst. were studied in 140 trees from 32 populations collected from within the tree's natural range. By sequencing two mitochondrial DNA intron fragments (nad4/3-nad4/4r and nad7/2-nad7/3r), we revealed a total of 1788 bp and five polymorphic sites which allowed us to distinguish six mitotypes. The mitochondrial DNA markers provided replicated data to support population phylogeographical scenarios suggested previously using chloroplastic DNA markers. The gene genealogical tree of mitochondrial DNA was partially congruent with the chloroplastic DNA tree owing to the slower mutation rate and different mutational direction. Significant linkage disequilibrium existed between the two organellar genomes. Further paring analyses between fragments synthesized using different primers, accompanied by exclusion of polymorphic sites, showed that the random association could be attributed specifically to one of the polymorphic sites of the petG-trnP fragment of the chloroplastic genome, and the three polymorphic sites of the nad4/3-nad4/4r fragment of the mitochondrial genome. The former was inferred to derive from paternal leakage, and the latter from recurrent mutation. These polymorphic sites were also responsible for uncoupling of the combined gene tree of mitotype and chlorotype. In conclusion, specific fragments found in this study contribute to the incomplete congruence of the two organellar lineages that otherwise associate well phylogeographically.  相似文献   

9.
The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.  相似文献   

10.
  总被引:1,自引:0,他引:1  
Sequence variation of the internal transcribed sequence 2 (ITS2) region of nuclear ribosomal DNA (nrDNA) was investigated in 10 North American populations of Hylocomium splendens. Cladistic analyses supported the monophyly of this moss species, rooted at Hylocomiastrum and Neodolichomitra. Three geographically based groups (Great Lakes Forest, Appalachian Mountains, and Pacific Northwest) were identified by a minimum spanning network. Significant genetic differentiation was detected (FST = 0.197 ? 0.390) among three geographical regions in North America. Although high genetic divergence exists within H. splendens, these results do not suggest sufficient divergence for designating sibling species.  相似文献   

11.
The alpine white-flowered buttercup, Ranunculus kuepferi Greuter & Burdet, is a polyploid complex with diploids endemic to the southwestern Alps and polyploids – which have been previously described as apomictic – widespread throughout European mountains. Due to the polymorphic status of both its ploidy level and its reproductive mode, R. kuepferi represents a key species for understanding the evolution of polyploid lineages in alpine habitats. To disentangle the phylogeography of this polyploid taxon, we used cpDNA sequences and AFLP (amplified fragment length polymorphism) markers in 33 populations of R. kuepferi representative of its ploidy level and distribution area. Polyploid individuals were shown to be the result of at least two polyploidization events that may have taken place in the southwestern Alps. From this region, one single main migration of tetraploids colonized the entire Alpine range, the Apennines and Corsica. Genetic recombination among tetraploids was also observed, revealing the facultative nature of the apomictic reproductive mode in R. kuepferi polyploids. Our study shows the contrasting role played by diploid lineages mostly restricted to persistent refugia and by tetraploids, whose dispersal abilities have permitted their range extension all over the previously glaciated Alpine area and throughout neighbouring mountain massifs.  相似文献   

12.
Debes PV  Zachos FE  Hanel R 《Molecular ecology》2008,17(17):3873-3888
We examined the genetic structure of the European sprat ( Sprattus sprattus ) by means of a 530-bp sequence of the mitochondrial control region from 210 fish originating from seven sampling localities of its distributional range. Phylogeographical analysis of 128 haplotypes showed a phylogenetic separation into two major clades with the Strait of Sicily acting as a barrier to gene flow between them. While no population differentiation was observed based on analysis of molecular variance and net nucleotide differences between samples of the Baltic Sea, the North Sea and the Bay of Biscay nor between the Black Sea and the Bosporus, a strong population differentiation between these samples and two samples from the Mediterranean Sea was found. Further, the biggest genetic distance was observed within the Mediterranean Sea between the populations of the Gulf of Lyon and the Adriatic Sea, indicating genetic isolation of these regions. Low genetic diversities and star-like haplotype networks of both Mediterranean Sea populations point towards recent demographic expansion scenarios after low population size, which is further supported by negative F S values and unimodal mismatch distributions with a low mean. Along the northeast Atlantic coast, a northwards range expansion of a large and stable population can be assumed. The history of a diverse but differentiated Black Sea population remains unknown due to uncertainties in the palaeo-oceanography of this sea. Our genetic data did not confirm the presently used classification into subspecies but are only preliminary in the absence of nuclear genetic analyses.  相似文献   

13.
    
1. The genetic differentiation in a migratory butterfly, the red admiral (Vanessa atalanta), was investigated to discern patterns of migratory routes used across Europe. AFLP profiles showed significant differences between almost all sampled locations, but there was no clear pattern of isolation‐by‐distance. 2. Using the software STRUCTURE 2.2, we found two distinct genotype clusters present in different frequencies at all study sites. The frequencies of these genotypic clusters varied significantly between years within the same site. Remarkably few individuals were of mixed ancestry, indicating that some isolating mechanisms are present. Twenty‐seven mtDNA haplotypes were identified but they showed no geographic structure, nor were they related to either of the two genotype clusters identified in the AFLP data. 3. Most field observations of migrating red admirals suggest a regular north–south migration pattern in Europe. Our data indicate both long‐distance migration and a more variable pattern in orientation, since the composition of the two genotypic clusters shows dramatic variation between sites and years in the northern part of the distribution range.  相似文献   

14.
    
Aim  To describe and analyse phylogeographical patterns in the endangered endemic lizard Podarcis lilfordi from across its remaining range and thereby establish baseline information on genetic diversity that will help determine conservation priorities and assist future reintroduction programs.
Location  Balearic Islands, Spain.
Methods  We analysed mitochondrial DNA (2382 bp sequence from eight genes) from 118 individuals and characterized the relationships among haplotypes using parsimony networks, as well as phylogenetic inference. Analyses of historical gene flow and population growth were used to provide further insights into population histories.
Results  Four unconnected parsimony networks were obtained that mirrored the main clades in the phylogenetic tree: (I) all Menorcan populations, (II) Dragonera, Malgrats and Toro islands (Western Mallorca) (III and IV) and the remaining populations from Cabrera and Mallorca. Two major haplotype groups were detected in Menorca (I) and these provided signatures of a demographic expansion and asymmetrical historical gene flow, respectively, concordant with the expected direction of colonization from south to north of the island. Populations from western Mallorca (II) showed evidence of historical allopatric fragmentation events following isolation around the start of the Pleistocene. In networks III and IV, Cabreran populations appear to have become isolated from north and south Mallorca quite recently, with asymmetric gene flow indicating a northwards dispersal direction.
Main conclusions  P. lilfordi is a genetically diverse species that shows substantial mtDNA structuring both between regions and, at a finer scale, between some islet populations within regions. The precarious state of some islet populations shown here to be quite divergent (e.g. Toro island in western Mallorca) means that conservation of this intraspecific biodiversity requires urgent action.  相似文献   

15.
HapStar: automated haplotype network layout and visualization   总被引:1,自引:0,他引:1  
Haplotype networks are commonly used for representing associations between sequences, yet there is currently no straightforward way to create optimal layouts. Automated optimal layouts are particularly useful not only because of the time-saving element but also because they avoid both human error and human-induced biases in the presentation of figures. HapStar directly uses the network connection output data generated from Arlequin (or a simple user-generated input file) and uses a force-directed algorithm to automatically lay out the network for easy visualization. In addition, this program is able to use the alternative connections generated by Arlequin to create a minimum spanning tree. HapStar provides a straightforward user-friendly interface, and publication-ready figures can be exported simply. HapStar is freely available (under a GPLv3 licence) for download for MacOSX, UNIX and Windows, at http://fo.am/hapstar.  相似文献   

16.
    
We investigated the phylogeography and evolutionary history of dusky dolphins (Lagenorhynchus obscurus) using DNA sequences of the full mitochondrial cytochrome b gene in 124 individuals from the putative stocks off Peru, Argentina and Southwest Africa. While genetic differentiation within oceans is surprisingly low, there is no evidence for recent female gene flow between Atlantic and Pacific waters. Highest genetic variability in terms of sequence divergence and number of haplotypes is found in the Atlantic. Our analyses also indicate that the eastern South Pacific dusky dolphins stock should be considered a separate management unit. Given the high level of mortality experienced by the Peruvian dusky dolphin in local fishery activities, these findings have important implications for an objective management of the species. Furthermore, we analysed our mitochondrial sequence data with several widely used network estimation and rooting methods. The resulting intraspecific gene genealogies and rooting inferences exhibited substantial differences, underlying the limitations of some algorithms. Given that scientific hypotheses and management decisions depend strongly on inferred tree or network topologies, there is a clear need for a systematic comparative analysis of available methods. Finally, the present study indicates that (i) the dusky and the Pacific white-sided dolphins are sister species and (ii) not only the Westwind Drift hypothesis but also other models of dispersion are compatible with the current geographical distribution of dusky dolphins.  相似文献   

17.
    
The phylogegraphic pattern of Cycas taitungensis, an endemic species with two remaining populations in Taiwan, was investigated based on genetic variability and phylogeny of the atpB-rbcL noncoding spacer of chloroplast DNA (cpDNA) and the ribosomal DNA (rDNA) internal transcribed spacer (ITS) of mitochondrial DNA (mtDNA). High levels of genetic variation at both organelle loci, due to frequent intramolecular recombination, and low levels of genetic differentiation were detected in the relict gymnosperm. The apportionment of genetic variation within and between populations agreed with a migrant-pool model, which describes a migratory pattern with colonists recruited from a random sample of earlier existing populations. Phylogenies obtained from cpDNA and mtDNA were discordant according to neighbour-joining analyses. In total four chlorotypes (clades I-IV) and five mitotypes (clades A-E) were identified based on minimum spanning networks of each locus. Significant linkage disequilibrium in mitotype-chlorotype associations excluded the possibility of the recurrent homoplasious mutations as the major force causing phylogenetic inconsistency. The most abundant chlorotype I was associated with all mitotypes and the most abundant mitotype C with all chlorotypes; no combinations of rare mitotypes with rare chlorotypes were found. According to nested clade analyses, such nonrandom associations may be ascribed to relative ages among alleles associated with the geological history through which cycads evolved. Nested in networks as interior nodes coupled with wide geographical distribution, the most dominant cytotypes of CI and EI may represent ancestral haplotypes of C. taitungensis with a possible long existence prior to the Pleistocene glacial maximum. In contrast, rare chlorotypes and mitotypes with restricted and patchy distribution may have relatively recent origins. Newly evolved genetic elements of mtDNA, with a low frequency, were likely to be associated with the dominant chlorotype, and vice versa, resulting in the nonrandom mitotype-chlorotype associations. Paraphyly of CI and EI cytotypes, leading to the low level of genetic differentiation between cycad populations, indicated a short period for isolation, which allowed low possibilities of the attainment of coalescence at polymorphic ancestral alleles.  相似文献   

18.
    
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty‐eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic ΦST not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.  相似文献   

19.
Mitochondrial (mt) DNA variation in Japanese beech, Fagus crenata (Fagaceae), was studied in 17 populations distributed throughout the species' range. Total genomic DNA of samples from single trees representing each of 12 populations were digested with 18 restriction enzymes and hybridized with three probes containing coxI, coxIII, and atpA gene sequences. Thirty-four of the 54 enzyme/probe combinations showed polymorphisms and all the individuals were subsequently analyzed with six combinations of three probes and two enzymes. Restriction fragment length polymorphisms were evident around all three genes, allowing the identification of eight distinct haplotypes. Haplotype diversity within the populations was found to be very low (HS = 0.031), but population differentiation to be much higher (GST = 0.963). The mtDNA variation was strikingly different from allozyme variation (HS = 0.209; GST = 0.039). Gene flow for maternally inherited mtDNA should be restricted to seed dispersal while nuclear gene flow occurs by both seed and pollen dispersal. Therefore, the difference in the variation between mtDNA and allozymes may be largely a result of the much higher rate of gene flow associated with pollen dispersal than with seed dispersal. The mtDNA variation displayed strong geographic structure, which may reflect the species' distribution in the last glacial maximum and subsequent colonization, and probably also reflects intraspecific phylogeography of the species.  相似文献   

20.
Abstract Pleistocene genetic structure of the bullhead, Cottus gobio, was evaluated across the western Palearctic using a 771‐bp long fragment of the mitochondrial control region in 123 individuals collected at 35 sites (data set I). In total, 59 haplotypes that differed at 73 positions (9.3%) were detected. Data analysis also included sequences from Englbrecht et al. (2000 ), thus increasing the sampling to a more comprehensive data set of 529 fish and 63 control region sequences of 482 bp (data set II). A minimum spanning and phylogenetic tree identified a seventh clade (Brittany–Loire) in addition to the previously identified six clades. The geographical range of the North Sea and Lower Rhine clades was considerably larger than thought previously. Haplotype diversity was generally low, and the total fixation index high (FST = 0.49). Among‐group differentiation accounted for 41.7% (data set I) of the variation. Contiguous range expansions and restricted gene flow combined with isolation by distance, interspersed with past fragmentation characterize bullhead across its range. New is the knowledge that dated interglacial periods correlated with population expansions; river captures, proglacial lake systems and sea level played a significant role in the dispersal and expansion either in northern or southern direction. Hence it became possible to identify and date the colonization routes and putative palaeorefugia, most of which were located in Central and North‐west Europe. Glacial periods resulted in distinct fragmentation events and lineage sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号