首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mammalian HRD1-SEL1L complex provides a scaffold for endoplasmic reticulum (ER)-associated degradation (ERAD), thereby connecting luminal substrates for ubiquitination at the cytoplasmic surface after their retrotranslocation through the endoplasmic reticulum membrane. In this study the stability of the mammalian HRD1-SEL1L complex was assessed by performing siRNA-mediated knockdown of each of its components. Although endogenous SEL1L is a long-lived protein, the half-life of SEL1L was greatly reduced when HRD1 is silenced. Conversely, transiently expressed SEL1L was rapidly degraded but was stabilized when HRD1 was coexpressed. This was in contrast to the yeast Hrd1p-Hrd3p, where Hrd1p is destabilized by the depletion of Hrd3p, the SEL1L homologue. Endogenous HRD1-SEL1L formed a large ERAD complex (Complex I) associating with numerous ERAD components including ERAD lectin OS-9, membrane-spanning Derlin-1/2, VIMP, and Herp, whereas transiently expressed HRD1-SEL1L formed a smaller complex (Complex II) that was associated with OS-9 but not with Derlin-1/2, VIMP, or Herp. Despite its lack of stable association with the latter components, Complex II supported the retrotranslocation and degradation of model ERAD substrates α1-antitrypsin null Hong-Kong (NHK) and its variant NHK-QQQ lacking the N-glycosylation sites. NHK-QQQ was rapidly degraded when SEL1L was transiently expressed, whereas the simultaneous transfection of HRD1 diminished that effect. SEL1L unassociated with HRD1 was degraded by the ubiquitin-proteasome pathway, which suggests the involvement of a ubiquitin-ligase other than HRD1 in the rapid degradation of both SEL1L and NHK-QQQ. These results indicate that the regulation of the stability and assembly of the HRD1-SEL1L complex is critical to optimize the degradation kinetics of ERAD substrates.  相似文献   

2.
We have previously shown that type I procollagen pro-alpha1(I) chains from an osteogenesis imperfecta patient (OI26) with a frameshift mutation resulting in a truncated C-propeptide, have impaired assembly, and are degraded by an endoplasmic reticulum-associated pathway (Lamandé, S. R., Chessler, S. D., Golub, S. B., Byers, P. H., Chan, D., Cole, W. G., Sillence, D. O. and Bateman, J. F. (1995) J. Biol. Chem. 270, 8642-8649). To further explore the degradation of procollagen chains with mutant C-propeptides, mouse Mov13 cells, which produce no endogenous pro-alpha1(I), were stably transfected with a pro-alpha1(I) expression construct containing a frameshift mutation that predicts the synthesis of a protein 85 residues longer than normal. Despite high levels of mutant mRNA in transfected Mov13 cells, only minute amounts of mutant pro-alpha1(I) could be detected indicating that the majority of the mutant pro-alpha1(I) chains synthesized are targeted for rapid intracellular degradation. Degradation was not prevented by brefeldin A, monensin, or NH(4)Cl, agents that interfere with intracellular transport or lysosomal function. However, mutant pro-alpha1(I) chains in both transfected Mov13 cells and OI26 cells were protected from proteolysis by specific proteasome inhibitors. Together these data demonstrate for the first time that procollagen chains containing C-propeptide mutations that impair assembly are degraded by the cytoplasmic proteasome complex, and that the previously identified endoplasmic reticulum-associated degradation of mutant pro-alpha1(I) in OI26 is mediated by proteasomes.  相似文献   

3.
4.
Several studies on disposal of nonsecreted Ig L chains have identified the endoplasmic reticulum as the site of degradation. Here, we examine degradation of a nonsecreted Ig L chain, T15L, and an experimentally endoplasmic reticulum-retained secretion-competent L chain, D16L, in the absence of H chains. We demonstrate that 1) degradation is specifically impaired by the proteasome-specific inhibitors carboxybenzyl-leucyl-leucyl-leucine vinyl sulfone (Z-L3VS) and lactacystin, 2) L chain degradation occurs early in the biosynthetic pathway, and 3) degradation does not require vesicular transport. Our findings indicate that previous assertions of L chain disposal within the endoplasmic reticulum must be modified. To our knowledge, we provide the first direct evidence supporting a new paradigm for removal of nonsecreted Ig L chains via dislocation to cytosolic proteasomes.  相似文献   

5.
Sophisticated quality control mechanisms prolong retention of protein-folding intermediates in the endoplasmic reticulum (ER) until maturation while sorting out terminally misfolded polypeptides for ER-associated degradation (ERAD). The presence of structural lesions in the luminal, transmembrane, or cytosolic domains determines the classification of misfolded polypeptides as ERAD-L, -M, or -C substrates and results in selection of distinct degradation pathways. In this study, we show that disposal of soluble (nontransmembrane) polypeptides with luminal lesions (ERAD-LS substrates) is strictly dependent on the E3 ubiquitin ligase HRD1, the associated cargo receptor SEL1L, and two interchangeable ERAD lectins, OS-9 and XTP3-B. These ERAD factors become dispensable for degradation of the same polypeptides when membrane tethered (ERAD-LM substrates). Our data reveal that, in contrast to budding yeast, tethering of mammalian ERAD-L substrates to the membrane changes selection of the degradation pathway.  相似文献   

6.
Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.  相似文献   

7.
The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER. In this study we characterized the structure and function of the putative human orthologue of yeast Hrd1p/Der3p, designated human HRD1. We show that human HRD1 is a non-glycosylated, stable ER protein with a cytosolic RING-H2 finger domain. In the presence of the ubiquitin-conjugating enzyme UBC7, the RING-H2 finger has in vitro ubiquitination activity for Lys(48)-specific polyubiquitin linkage, suggesting that human HRD1 is an E3 ubiquitin ligase involved in protein degradation. Human HRD1 appears to be involved in the basal degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase but not in the degradation that is regulated by sterols. Additionally we show that human HRD1 is involved in the elimination of two model ER-associated degradation substrates, TCR-alpha and CD3-delta.  相似文献   

8.
Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (kappa(NS1)) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of kappa(NS1), arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of kappa(NS1) upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of kappa(NS1) and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-kappa(NS1) complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.  相似文献   

9.
Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are generally dislocated across the membrane to be degraded by cytosolic proteasomes. To investigate how the quality control machinery handles individual subunits that are part of covalent oligomers, we have analyzed the fate of transport-competent Ig light (L) chains that form disulfide bonds with short-lived mu heavy chains. When expressed alone, L chains are secreted. In cells producing excess mu, most L chains are retained in the ER as covalent mu-L or mu2-L2 complexes. While mu chains present in these complexes are degraded by proteasomes, L chains are stable. Few L chains are secreted; most reassociate with newly synthesized mu chains. Therefore, interchain disulfide bonds are reduced in the ER lumen before the dislocation of mu chains in a site from which freed L chains can be rapidly reinserted in the assembly line. The ER can thus sustain the simultaneous formation and reduction of disulfide bonds.  相似文献   

10.
Protein quality control in the endoplasmic reticulum (ER) involves recognition of misfolded proteins and dislocation from the ER lumen into the cytosol, followed by proteasomal degradation. Viruses have co-opted this pathway to destroy proteins that are crucial for host defense. Examination of dislocation of class I major histocompatibility complex (MHC) heavy chains (HCs) catalyzed by the human cytomegalovirus (HCMV) immunoevasin US11 uncovered a conserved complex of the mammalian dislocation machinery. We analyze the contributions of a novel complex member, SEL1L, mammalian homologue of yHrd3p, to the dislocation process. Perturbation of SEL1L function discriminates between the dislocation pathways used by US11 and US2, which is a second HCMV protein that catalyzes dislocation of class I MHC HCs. Furthermore, reduction of the level of SEL1L by small hairpin RNA (shRNA) inhibits the degradation of a misfolded ribophorin fragment (RI332) independently of the presence of viral accessories. These results allow us to place SEL1L in the broader context of glycoprotein degradation, and imply the existence of multiple independent modes of extraction of misfolded substrates from the mammalian ER.  相似文献   

11.
12.
1. Fast skeletal myosin subfragment 1 (S1) was separated into two isozymes, S1(A1) and S1(A2), based on the associated alkali light chain, and their thermostabilities were compared. 2. Inactivation rate constants of Ca2(+)-ATPase (at 30 and 35 degrees C) were higher and heat-induced turbidity increase at 340 nm (at 40 degrees C) was faster with S1(A1) than with S1(A2), indicating a higher stability of S1(A2). 3. When S1 isozymes were incubated in the presence of excess alkali light chain, turbidity increase was markedly reduced, depending on the amount of light chain added. 4. Results obtained strongly suggest that alkali light chains are involved in the maintenance of myosin head structure.  相似文献   

13.
14.
In eukaryotes, the final steps in both the regulated and constitutive secretory pathways can be divided into four distinct stages: (i) the 'approach' of secretory vesicles/granules to the PM (plasma membrane), (ii) the 'docking' of these vesicles/granules at the membrane itself, (iii) the 'priming' of the secretory vesicles/granules for the fusion process, and, finally, (iv) the 'fusion' of vesicular/granular membranes with the PM to permit content release from the cell. Recent work indicates that non-muscle myosin II and the unconventional myosin motor proteins in classes 1c/1e, Va and VI are specifically involved in these final stages of secretion. In the present review, we examine the roles of these myosins in these stages of the secretory pathway and the implications of their roles for an enhanced understanding of secretion in general.  相似文献   

15.
In order to study the role of N-glycans in the ER-associated degradation of unassembled immunoglobulin light (Ig L) chains, we introduced N-glycan acceptor sites into the variable domain of the murine Ig L chain kappaNS1, which is unfolded in unassembled molecules. We investigated the fate of kappaNS1 glycosylated at position 70 (K70) and of a double mutant (kappa18/70) in stably transfected HeLa cells. Degradation of both chains was impaired by lactacystin, a specific inhibitor of the proteasome. The mannosidase inhibitor dMNJ also blocked degradation in a step preceding proteasome action, as did two protein synthesis inhibitors, cycloheximide and puromycin. In contrast, ER glucosidase inhibitors dramatically accelerated the degradation of the chains when added either pre- or posttranslationally. The accelerated degradation was sensitive to lactacystin, dMNJ and cycloheximide, too. None of these drugs, except lactacystin, affected the degradation of unglycosylated kappaNS1 chains. We conclude that ER mannosidases and proteasome activities, but not glucose trimming (and therefore, most likely not the calnexin/calreticulin UDP:glucose glycoprotein glucosyl transferase cycle), are essential for ER-associated degradation (ERAD) of soluble glycoproteins. A role for a short-lived protein, acting before or simultaneously to ER mannosidases, is suggested.  相似文献   

16.
The tyrosine phosphatases family member PTEN is a tumor suppressor which is widely expressed throughout the body and is involved in a variety of biological functions. PTEN is known to be frequently mutated or downregulated in human cancers. However, the underlying molecular mechanism remains largely unknown. Here, using a proteomic approach, we identified the E3 ubiquitin ligase HRD1, which was previously reported to be involved in endoplasmic reticulum associated degradation (ERAD), as one of the PTEN-interacting proteins. We also found that HRD1 promoted PTEN degradation by positively regulating its ubiquitination. In addition, suppression of HRD1 expression resulted in the inhibition of the growth, migration and invasion of hepatocellular carcinoma in vitro and in vivo. Finally, we detected a negative correlation between HRD1 and PTEN expression in human hepatocellular carcinoma. From these results we propose a novel molecular mechanism of HRD1 to promote hepatocellular tumorigenesis via PTEN inactivation. We conclude that targeting HRD1 may represent a new therapeutic strategy for PTEN-loss hepatocellular carcinoma.  相似文献   

17.
Non-hydrolysable analogues of GTP, such as GTP gamma S and GMP-PNP, have previously been shown to inhibit the formation of constitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN). Using a cell-free system, we show here that the formation of these vesicles is also inhibited by [A1F4]-, a compound known to act on trimeric G-proteins. Addition of highly purified G-protein beta gamma subunits stimulated, in a differential manner, the cell-free formation of both CSVs and ISGs. ADP-ribosylation experiments revealed the presence of a pertussis toxin-sensitive G-protein alpha subunit in the TGN. We conclude that trimeric G-proteins regulate the formation of secretory vesicles from the TGN.  相似文献   

18.
Known activities of the ubiquitin-selective AAA ATPase Cdc48 (p97) require one of the mutually exclusive cofactors Ufd1/Npl4 and Shp1 (p47). Whereas Ufd1/Npl4 recruits Cdc48 to ubiquitylated proteins destined for degradation by the 26S proteasome, the UBX domain protein p47 has so far been linked exclusively to nondegradative Cdc48 functions in membrane fusion processes. Here, we show that all seven UBX domain proteins of Saccharomyces cerevisiae bind to Cdc48, thus constituting an entire new family of Cdc48 cofactors. The two major yeast UBX domain proteins, Shp1 and Ubx2, possess a ubiquitin-binding UBA domain and interact with ubiquitylated proteins in vivo. Deltashp1 and Deltaubx2 strains display defects in the degradation of a ubiquitylated model substrate, are sensitive to various stress conditions and are genetically linked to the 26S proteasome. Our data suggest that Shp1 and Ubx2 are adaptors for Cdc48-dependent protein degradation through the ubiquitin/proteasome pathway.  相似文献   

19.

Background  

The vertebrate pancreas contains islet, acinar and ductal cells. These cells derive from a transient pool of multipotent pancreatic progenitors during embryonic development. Insight into the genetic determinants regulating pancreatic organogenesis will help the development of cell-based therapies for the treatment of diabetes mellitus. Suppressor enhancer lin12/Notch 1 like (Sel1l) encodes a cytoplasmic protein that is highly expressed in the developing mouse pancreas. However, the morphological and molecular events regulated by Sel1l remain elusive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号