首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Biosynthesis of the FeMo cofactor (FeMoco) of nitrogenase MoFe protein is arguably one of the most complex processes in metalloprotein biochemistry. Here we investigate the role of a MoFe protein residue (Trp-alpha444) in the final step of FeMoco assembly, which involves the insertion of FeMoco into its binding site. Mutations of this aromatic residue to small uncharged ones result in significantly decreased levels of FeMoco insertion/retention and drastically reduced activities of MoFe proteins, suggesting that Trp-alpha444 may lock the FeMoco tightly in its binding site through the sterically restricting effect of its bulky, aromatic side chain. Additionally, these mutations cause partial conversion of the P-cluster to a more open conformation, indicating a potential connection between FeMoco insertion and P-cluster assembly. Our results provide some of the initial molecular insights into the FeMoco insertion process and, moreover, have useful implications for the overall scheme of nitrogenase assembly.  相似文献   

2.
The assembly of the complex iron-molybdenum cofactor (FeMoco) of nitrogenase molybdenum-iron (MoFe) protein has served as one of the central topics in the field of bioinorganic chemistry for decades. Here we examine the role of a MoFe protein residue (His alpha362) in FeMoco insertion, the final step of FeMoco biosynthesis where FeMoco is incorporated into its binding site in the MoFe protein. Our data from combined metal, activity and electron paramagnetic resonance analyses show that mutations of His alpha362 to small uncharged Ala or negatively charged Asp result in significantly reduced FeMoco accumulation in MoFe protein, indicating that His alpha362 plays a key role in the process of FeMoco insertion. Given the strategic location of His alpha362 at the entry point of the FeMoco insertion funnel, this residue may serve as one of the initial docking points for FeMoco insertion through transient ligand coordination and/or electrostatic interaction.  相似文献   

3.
The final step of FeMo cofactor (FeMoco) assembly involves the insertion of FeMoco into its binding site in the molybdenum-iron (MoFe) protein of nitrogenase. Here we examine the role of His alpha274 and His alpha451 of Azotobacter vinelandii MoFe protein in this process. Our results from combined metal, activity, EPR, stability and insertion analyses show that mutations of His alpha274 and/or His alpha451, two of the histidines that belong to a so-called His triad, to small uncharged Ala specifically reduce the accumulation of FeMoco in MoFe protein. This observation indicates that the enrichment of histidines at the His triad is important for FeMoco insertion and that the His triad potentially serves as an intermediate docking point for FeMoco through transitory ligand coordination and/or electrostatic interaction.  相似文献   

4.
5.
N-甲基甲酰胺碱度是提取高质量固氮酶铁钼辅基的关键因素之一。过量的亚甲蓝能氧化并分解铁铜铺基为含双相铁硫簇和铁硫簇固氮酶铁钼辅基和在紫外可见光谱区中均无特征吸收峰,而在320nm处却呈弱吸收峰,棕色固氮菌固氮酶和该菌的突变菌侏UW45固氮酶(缺铁钼辅基)中的非含钼的铁硫簇在紫外可见光谱区320nm和405nm处均含有特征吸收峰.  相似文献   

6.
The nifZ gene product (NifZ) of Azotobacter vinelandii has been implicated in MoFe protein maturation. However, its exact function in this process remains largely unknown. Here, we report a detailed biochemical/biophysical characterization of His-tagged MoFe proteins purified from A. vinelandii nifZ and nifZ/nifB deletion strains DJ1182 and YM6A (Delta nifZ and Delta nifZ Delta nifB MoFe proteins, respectively). Our data from EPR, metal, activity, and stability analyses indicate that one alpha beta subunit pair of the Delta nifZ MoFe protein contains a P cluster ([8Fe-7S]) and an iron-molybdenum cofactor (FeMoco) ([Mo-7Fe-9S-X-homocitrate]), whereas the other contains a presumed P cluster precursor, possibly comprising a pair of [4Fe-4S]-like clusters, and a vacant FeMoco site. Likewise, the Delta nifZ Delta nifB MoFe protein has the same composition as the Delta nifZ MoFe protein except for the absence of FeMoco, an effect caused by the deletion of the nifB gene. These results suggest that the MoFe protein is likely assembled stepwise, i.e. one alpha beta subunit pair of the tetrameric MoFe protein is assembled prior to the other, and that NifZ might act as a chaperone in the assembly of the second alpha beta subunit pair by facilitating a conformational rearrangement that is required for the formation of the P cluster through the condensation of two [4Fe-4S]-like clusters. The possibility of NifZ exercising its effect through the Fe protein was ruled out because the Fe proteins from nifZ and nifZ/nifB deletion strains are not defective in their normal functions. However, the detailed mechanism of how NifZ carries out its exact function in MoFe protein maturation awaits further investigation.  相似文献   

7.
钼铁蛋白铁钼辅因子的有机组分对其功能的影响   总被引:3,自引:0,他引:3  
棕色固氮菌(Azotobacter vinelandii)固氮酶的钼铁蛋白经邻菲啰啉在厌氧或有氧环境中处理后,变为 P-cluster 单一缺失或 P-cluster 和 FeMoco 同时缺失的失活钼铁蛋白。含柠檬酸盐或高柠檬酸盐的重组液都使这两种失活蛋白能恢复固氮酶重组的 H~ 和 C_2H_2还原活性,活性恢复程度随反映钼铁蛋白中金属原子簇含量变化的圆二色和磁圆二色谱及金属含量的恢复程度的提高而提高,但它们固 N_2能力的恢复程度则不相同:P-cluster 单一缺失的蛋白用两种重组液重组后均可恢复其固 N_2能力,而 P-cluster 和 FeMoco 同时缺失的蛋白,只有用含高柠檬酸盐的重组液重组才恢复其固 N_2能力,表明含不同有机组分的重组液所组装的 P-cluster 均与天然状态相同,只有含高柠檬酸盐的重组液所组装的 FeMoco 才与天然状态相同,从而证明高柠檬酸盐是 FeMoco 的必需的有机组分。  相似文献   

8.
The nitrogenase MoFe protein is a heterotetramer containing two unique high-nuclearity metalloclusters, FeMoco and the P-cluster. FeMoco is assembled outside the MoFe protein, whereas the P-cluster is assembled directly on the MoFe protein polypeptides. MoFe proteins isolated from different genetic backgrounds have been analyzed using biochemical and spectroscopic techniques in attempting to elucidate the pathway of P-cluster biosynthesis. The DeltanifH MoFe protein is less stable than other MoFe proteins and has been shown by extended X-ray absorption fine structure studies to contain a variant P-cluster that most likely exists as two separate [Fe4S4]-like clusters instead of the subunit-bridging [Fe8S7] cluster found in the wild-type and DeltanifB forms of the MoFe protein [Corbett, M. C., et al. (2004) J. Biol. Chem. 279, 28276-28282]. Here, a combination of small-angle X-ray scattering and Fe chelation studies is used to show that there is a correlation between the state of the P-cluster and the conformation of the MoFe protein. The DeltanifH MoFe protein is found to be larger than the wild-type or DeltanifB MoFe proteins, an increase in size that can be modeled well by an opening of the subunit interface consistent with P-cluster fragmentation and solvent exposure. Importantly, this opening would allow for the insertion of P-cluster precursors into a region of the MoFe protein that is buried in the wild-type conformation. Thus, DeltanifH MoFe protein could represent an early intermediate in MoFe protein biosynthesis where the P-cluster precursors have been inserted, but P-cluster condensation and tetramer stabilization have yet to occur.  相似文献   

9.
When the iron-molybdenum cofactor (FeMoco) was extracted from the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae and combined with the FeMoco-deficient MoFe protein from a nifB mutant, the resultant MoFe protein exhibited the NifV phenotype, i.e. in combination with wild-type Fe protein it exhibited poor N2-fixation activity and its H2-evolution activity was inhibited by CO. These data provide strong evidence that FeMoco contains the active site of nitrogenase. The metal contents and e.p.r. properties of FeMoco from wild-type and nifV mutants of K. pneumoniae are very similar.  相似文献   

10.
The electrophoretic properties of the molybdenum-iron (MoFe) protein component of nitrogenase and an iron-molybdenum cofactor (FeMoco)-reactivatable apoMoFe protein from Klebsiella pneumoniae were examined under anaerobic ([O2] < 5 ppm), nondenaturing conditions. In wild type K. pneumoniae extracts, two immunoreactive species migrating more slowly than purified MoFe protein were detected using anti-MoFe protein antibodies. The uppermost species comigrates with the apoMoFe protein produced by a K. pneumoniae mutant unable to synthesize FeMoco (UN106) and by Escherichia coli harboring the plasmids pVL222+pVL15 (nifHDKTYUSWZM+A). In vitro FeMoco titration of the UN106 and pVL222+pVL15 extracts increases the electrophoretic mobility of the apoMoFe protein to that of purified MoFe protein in a two-step process giving rise to a species of intermediate mobility between the apo- and holoMoFe proteins. Two-dimensional gel electrophoresis showed that a 20-kDa peptide is associated with the apoMoFe protein and with the intermediate species, but not with the holoMoFe protein. N-terminal sequencing identified this associated peptide as the nifY gene product, which we propose is acting as a temporary enforcer of the apoMoFe protein structure required for cofactor binding that is released upon FeMoco activation. This FeMoco-induced mobility shift was used to characterize the mutant apoMoFe proteins produced in E. coli as a result of deleting the various nitrogen fixation (nif) genes from the plasmid pVL222. E. coli extracts bearing plasmids deleted in nifH, nifS, nifTYUM, or nifWZM exhibit less than 10% of the apoMoFe protein activity of derepressed UN106 and contain an immunoreactive species whose electrophoretic mobility is increased upon addition of FeMoco from that of apoMoFe protein to that of holoMoFe protein in a single step. Anaerobic nondenaturing gel electrophoresis of 55Fe-labeled E. coli extracts followed by autoradiography showed that these inactive apoMoFe species do not contain iron, indicating that the P-clusters are absent. We therefore propose that NifH, S, U, W, Z, and M are all involved, to varying degrees, in P-cluster assembly. In addition, the presence of the P-clusters does appear to be necessary for the two-step FeMoco activation of the apoMoFe protein to occur.  相似文献   

11.
The inactive MoFe protein (NifB-Kp1) of nitrogenase from nifB mutants of Klebsiella pneumoniae may be activated by addition of the iron-molybdenum cofactor (FeMoco) extracted from active MoFe protein (Kp1). However, when apparently saturated with FeMoco, our preparations of NifB-Kp1 yielded activated protein, Kp1-asm, with a specific activity that was at best only 40% of that expected. This was not due to degradation of Kp1-asm, NifB-Kp1 or FeMoco during the activation reaction. Nor could activation be enhanced by addition of other nif-gene products or other proteins. Whereas fully active Kp1 contains 2 FeMoco/molecule, apparent saturation of our NifB-Kp1 preparations required the binding of only 0.4-0.65 FeMoco/molecule. By using chromatography Kp1-asm could be largely resolved from NifB-Kp1 that had not been activated. However, we were unable to isolate fully active MoFe protein (i.e. Kp1-asm containing 2 FeMoco/molecule) from solutions of NifB-Kp1 activated with FeMoco. The maximum activity/ng-atom of total Mo obtained for our purified Kp1-asm was approximately half the maximum activity for FeMoco. Since all NifB-Kp1 preparations contained some Mo, we suggest that FeMoco activated only those NifB-Kp1 molecules already containing one atom of (non-FeMoco) Mo, thus forming Kp1-asm with 2 Mo but only 1 FeMoco/molecule. Kp1-asm was identical with normal Kp1 in terms of its Mr, stability, e.p.r. signals, pattern of substrate reductions, CO inhibition and ATP/2e ratio. In addition, for preparations of differing specific activity, there was a constant and identical relationship between the e.p.r. signal intensity (from FeMoco) and the activity of both Kp1 and Kp1-asm. Assuming the above hypothesis on the structure of Kp1-asm, these data demonstrate that the two FeMoco sites in wild-type Kp1 operate independently.  相似文献   

12.
FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus.   总被引:2,自引:0,他引:2  
In all diazotrophic micro-organisms investigated so far, mutations in nifE, one of the genes involved in the biosynthesis of the FeMo cofactor (FeMoco), resulted in the accumulation of cofactorless inactive dinitrogenase. In this study, we have found that strains of the phototrophic non-sulfur purple bacterium Rhodobacter capsulatus with mutations in nifE, as well as in the operon harbouring the nifE gene, were capable of reducing acetylene and growing diazotrophically, although at distinctly lower rates than the wild-type strain. The diminished rates of substrate reduction were found to correlate with the decreased amounts of the dinitrogenase component (MoFe protein) expressed in R. capsulatus. The in vivo activity, as measured by the routine acetylene-reduction assay, was strictly Mo-dependent. Maximal activity was achieved under diazotrophic growth conditions and by supplementing the growth medium with molybdate (final concentration 20-50 microM). Moreover, in these strains a high proportion of ethane was produced from acetylene ( approximately 10% of ethylene) in vivo. However, in in vitro measurements with cell-free extracts as well as purified dinitrogenase, ethane production was always found to be less than 1%. The isolation and partial purification of the MoFe protein from the nifE mutant strain by Q-Sepharose chromatography and subsequent analysis by EPR spectroscopy and inductively coupled plasma MS revealed that FeMoco is actually incorporated into the protein (1.7 molecules of FeMoco per tetramer). On the basis of the results presented here, the role of NifNE in the biosynthetic pathway of the FeMoco demands reconsideration. It is shown for the first time that NifNE is not essential for biosynthesis of the cofactor, although its presence guarantees formation of a higher content of intact FeMoco-containing MoFe protein molecules. The implications of our findings for the biosynthesis of the FeMoco will be discussed.  相似文献   

13.
While the iron-molybdenum cofactor (FeMoco) of nitrogenase, a constituent of the active site for nitrogen reduction, can be extracted into N-methylformamide (NMF) and pyrrollidinone, the inability to solubilize it in any other organic solvents has hampered further understanding of its structure and chemical properties. A method to solubilize FeMoco, prepared in N,N-dimethylformamide (DMF) with Bu4N+ as counterion [McLean, P. A., Wink, D. A., Chapman, S. K., Hickman, A. B., McKillop, D. M., & Orme-Johnson, W. H. (1989) Biochemistry (preceding paper in this issue)], in acetonitrile, acetone, methylene chloride, tetrahydrofuran, and benzene is reported. FeMoco evaporated to dryness in vacuo dissolves readily in good yield (55-100%) and with no significant loss in specific activity. In addition, FeMoco can be extracted directly into these solvents from MoFe protein bound to a DEAE-Sepharose column if the protein is pretreated with DMF. Methods have also been developed to extract fully active FeMoco into acetone and acetonitrile in the absence of any amide solvents (NMF or DMF). Extraction of FeMoco into acetone (30% yield) involves only pretreatment of column-bound protein with methanol, while extraction into acetonitrile (22% yield) requires pretreatment with methanol followed by THF. We conclude that the presence of a suitable soluble cation confers solubility to the cofactor in many common organic solvents and that the solubility of FeMoco in a given solvent may be independent of the ability of that solvent to extract the cofactor from column-bound protein.  相似文献   

14.
In comparison with OP MoFe protein from wild type strain Azotobacter vinelandii Lipmann, the C2H2-reduction activity and atom ratio of Fe to Mo of △nifZ MoFe protein from a nifZ deletion strain of A. vinelandii were remarkably decreased. FeMoco, which were extracted from these two proteins under the same condition, were almost similar to each other in activity and metal composition, and the circular dichroism (CD) spectra of these proteins were significantly different from each other. In the visible region except 540 750 nm, the △ε at 380 - 540 nm of △nifZ MoFe protein decreased and had a peculiar sharp negative peak around 430 nm; and in the ultraviolet region, the peaks at 208 nm and 222 nm were higher than those of OP MoFe protein. △nifZ MoFe protein could be crystallized in a suitable concentration of PEG 8000 and MgCl2, the size of crystals and amount of precipitation seemed to be related to the above-mentioned negative peaks. The results showed that △nifZ of Azotobacter vinelanclii might be related to the synthesis of P-cluster, rather than to that of FeMoco, which resulted in its conformation, stability and process of crystallization.  相似文献   

15.
The inactive MoFe protein of nitrogenase, NifB-Kp1, from two distinct nifB mutants of Klebsiella pneumoniae, Kp5058 (a nifB point mutant) and UNF1718 (a nifB, nifJ double mutant) has been purified and characterized. NifB-Kp1 can be activated by reaction with the iron-molybdenum cofactor, FeMoco, extracted from active MoFe protein. NifB-Kp1 purified from either source had similar properties and was contaminated with an approximately equimolar amount of protein of mol.wt. 21 000. Like active wild-type Kp1, it was an alpha 2 beta 2 tetramer, but it was far less stable than Kp1, deteriorating rapidly at temperatures above 8 degrees C or on mild oxidation. NifB-Kp1 preparations contained 0.4-0.9 Mo and 9.0 +/- 0.9 Fe atoms . mol-1 and, when activated by FeMoco, had a specific activity of approx. 500 units . mg-1. The Mo in our preparations was not associated with the e.p.r. signal normally observed from FeMoco. All preparations exhibited a weak gav. = 1.95 e.p.r. signal which was probably not associated with activatable protein.  相似文献   

16.
NifEN plays a key role in the biosynthesis of the iron–molybdenum cofactor (FeMoco) of nitrogenase. A scaffold protein that hosts the conversion of a FeMoco precursor to a mature cofactor, NifEN can assume three conformations during the process of FeMoco maturation. One, designated ΔnifB NifEN, contains only two permanent [Fe4S4]-like clusters. The second, designated NifENPrecursor, contains the permanent clusters and a precursor form of FeMoco. The third, designated NifEN“FeMoco”, contains the permanent [Fe4S4]-like clusters and a fully complemented, “FeMoco”-like structure. Here, we report a variable-temperature, variable-field magnetic circular dichroism spectroscopic investigation of the electronic structure of the metal clusters in the three forms of dithionite-reduced NifEN. Our data indicate that the permanent [Fe4S4]-like clusters are structurally and electronically conserved in all three NifEN species and exhibit spectral features of classic [Fe4S4]+ clusters; however, they are present in a mixed spin state with a small contribution from the S > ½ spin state. Our results also suggest that both the precursor and “FeMoco” have a conserved Fe/S electronic structure that is similar to the electronic structure of FeMoco in the MoFe protein, and that the “FeMoco” in NifEN“FeMoco” exists, predominantly, in an S = 3/2 spin state with spectral parameters identical to those of FeMoco in the MoFe protein. These observations provide strong support to the outcome of our previous EPR and X-ray absorption spectroscopy/extended X-ray absorption fine structure analysis of the three NifEN species while providing significant new insights into the unique electronic properties of the precursor and “FeMoco” in NifEN.  相似文献   

17.
By treating the reduced MoFe protein of nitrogenase from Azotobacter vinelandii with O-phenanthroline (O-phen) and O2, inactive MoFe protein which was partialy deficient in both P-cluster and FeMoco could be obtained. After incubating the inactive protein with a reconstituent solution containing KMnO4, ferric homocitrate, Na2S and dithiothreitol, a reconstituted protein could be obtained. The absorption spectrum and C2H2, H+ and N2 reduction activity of the reconstituted protein could be well restored to the state of the reduced MoFe protein. However, the α-helix and CD spectrum at 380—550 nm and at 620—670 nm of the reconstituted protein were somewhat different from those of the reduced MoFe protein. The results showed that: (1) the reconstituted protein was composed of the assembled protein which might be a MnFe protein due to the reconstitution of the metalloclusterdeficient MoFe protein with Mn-containing solution and MoFe protein in which metalloclusters were still intact after the treatment with O-phen and O2; (2) It might be possible that the MnFe protein and MoFe protein were similar in the ability of nitrogen fixation, but were somewhat different in the structure from each other.  相似文献   

18.
固氮酶铁钼辅基在分离纯化中结构变化的新证据   总被引:1,自引:0,他引:1  
根据Kim-Rees模型[1],固氮酶铁钼辅基(即FeMoco或M簇),是由一个MoFe3S3簇和一个Fe4S3簇通过三个S-桥联接而成.然而,自Shah等(1977)首次从结晶的钼铁蛋白中分离出具有生物重组活性的FeMoco以来,固氮研究者们一直致...  相似文献   

19.
The x-ray crystal structure of NifV(-) Klebsiella pneumoniae nitrogenase MoFe protein (NifV(-) Kp1) has been determined and refined to a resolution of 1.9 A. This is the first structure for a nitrogenase MoFe protein with an altered cofactor. Moreover, it is the first direct evidence that the organic acid citrate is not just present, but replaces homocitrate as a ligand to the molybdenum atom of the iron molybdenum cofactor (FeMoco). Subsequent refinement of the structure revealed that the citrate was present at reduced occupancy.  相似文献   

20.
By treating the reduced MoFe protein from Azotobacter vinelandii with o-phenanthroIi e and O2, partially deficient in both FeMoco and P-cluster and inactive protein could be o rained. After incubating the treated protein with a reconstituent solution containing K2CrO4, ferric homocitrate, Na2S and dithiothreitol, a reactivated protein could be obtained. The absorption spectrum, circular dichroism spectrum, and the C2H2 and proton reduction activities of the reactivated protein were remarkably recovered. However, the spectra were somewhat different from those of the reduced MoFe protein. The results showed that some of the reactivated protein might be Cr-containing protein (CrFe protein) which were similar in function, but somewhat different in structure from MoFe protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号