首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-dependence of somatostatin binding to receptors   总被引:1,自引:0,他引:1  
C Susini  J P Esteve  N Vaysse  A Ribet 《Peptides》1985,6(5):831-833
Binding of 125I-[Tyr11] somatostatin (S14) and 125I-[Tyr1]S14 has been studied in pancreatic acini and cerebral cortex. Ca2+-dependence of somatostatin binding to receptors was observed only with the highly non degradable iodinated analog 125I-[Tyr11] somatostatin but not with 125I-[Tyr1] somatostatin. The inhibitory activity of S14 on secretin-stimulated cAMP cellular content was decreased when Ca2+ concentration in the medium was reduced to 30 nM, indicating that the Ca2+ dependence of somatostatin binding to receptors is also present with the native peptide.  相似文献   

2.
Tumor promoter inhibition of cellular binding of somatostatin   总被引:1,自引:0,他引:1  
Tumor promoting phorbol esters inhibited the binding of 125I-[Tyr11] somatostatin to isolated acinar cells from guinea-pig pancreas. Maximal inhibition reached 69.7 +/- 5% at 1 microM TPA. Receptor affinity was decreased by 2.5-fold without change in binding capacity. The ability of TPA in inhibiting somatostatin binding was decreased in 30 nM Ca2+ medium, abolished at 4 degrees C or in a membrane preparation. The effect of caerulein, a secretagogue which also caused loss of binding, and that of TPA were not additive. We concluded that TPA inhibits somatostatin binding not by binding directly at the active site of somatostatin receptor. TPA may act at a later point than caerulein via a similar pathway to modulate somatostatin receptor affinity.  相似文献   

3.
Somatostatin binding sites were characterized in isolated rat adipocytes. The binding was found to be saturable, reversible, and time- and temperature-dependent. The somatostatin binding sites are principally located on the cell surface. 125I-[Tyr11]somatostatin binding was not inhibited by glucagon and angiotensin II. By contrast, native somatostatin and somatostatin-28 displaced labeled peptide with a similar ED50: 50 nM. Scatchard analysis pointed to the existence of two classes of binding sites, with a Kd of 7.64 nM for the high-affinity sites and a Kd of 295 nM for the low-affinity ones. Comparison of somatostatin receptor binding and its lipolytic action in isolated rat adipocytes suggested that the spare receptor phenomenon cannot be applied to the lipolytic action of somatostatin in rat adipose tissue.  相似文献   

4.
In the present study we characterized high-affinity somatostatin (SRIF) binding sites (Kd = 2.06 +/- 0.32 nM and Bmax = 295 +/- 28 fmol/mg protein) in cerebral cortex membrane preparations of European ground squirrel using 125I-[Tyr0-D-Trp8]-SRIF14 as a radioligand. The inhibition of radioligand specific binding by SRIF14, as well as by its agonists (SRIF28, Tyr0-D-Trp8-SRIF14, SMS 201 995) was complete and monophasic, thus revealing a single population of somatostatinergic binding sites. Radioautographic analysis of 125I-[Tyr0-D-Trp8]-SRIF14 labeled brain sections confirmed the results of our biochemical study. The homogeneity of SRIF binding sites in the ground squirrel neocortex was not dependent on the animal's life-cycle phase.  相似文献   

5.
Somatostatin binding to guinea pig pancreatic acinar cell plasma membranes was characterized with an iodinated stable analog of somatostatin 28 (S28): 125I-[Leu8, DTrp22,Tyr25] S28. The binding was highly dependent on calcium ions. In 0.2 mM free Ca2+ medium, binding at 37°C was saturable, slowly reversible and exhibited a single class of high affinity binding sites (KD=0.05±0.01 nM, Bmax=157±33 fmol/mg protein). Dissociation of bound radioactivity occurred with biphasic kinetics. Rate of dissociation increased when dissociation was measured at a time before equilibrium binding was reached. In 30 nM free Ca2+ medium, binding affinity and maximal binding capacity were decreased by about 4-fold. Decreasing calcium concentrations increased the amount of rapidly dissociating form of the receptor. Somatostatin 14 antagonist, Des AA1,2[AzaAla4–5,DTrp8,Phe12–13]-somatostatin was active at the membrane level in inhibiting the binding. We conclude that using 125I-[Leu8,DTrp22,Tyr25]S28 as radioligand allows us to characterize a population of specific somatostatin receptors which are not different from those we previously described with the radioligand 125I-[Tyr11]-somatostatin. Somatostatin receptors could exist in two interconvertible forms. Calcium ions are an essential component in the regulation of the conformational change of somatostatin receptors.  相似文献   

6.
Characterization of bombesin receptors on canine antral gastrin cells   总被引:2,自引:0,他引:2  
Dispersed canine antral mucosal cells were prepared by sequential steps of collagenase digestion and EDTA treatment. Cell preparations enriched in gastrin cells were made by centrifugal elutriation followed by step density gradient centrifugation. Specific, saturable, and reversible binding of 125I-[Tyr4]-bombesin was found in all preparations. This saturable binding was time, temperature, and cell number dependent. In both velocity (elutriator) and density cell separation experiments, saturable binding of bombesin correlated with the distribution of cells containing gastrin- but not somatostatin-like immunoreactivity. Maximal specific binding to gastrin (G) cell-enriched fractions was reached in 45 min at 37 degrees C and constituted 90% of total binding. Addition of 100 nM nonradioactive bombesin to cells incubated with 50 pM 125I-[Tyr4]-bombesin for 45 min resulted in time-dependent dissociation of specifically bound tracer to about 40% of the maximal equilibrium binding. Analysis of saturable equilibrium binding yielded a best fit to a one-site model of high affinity binding sites with an apparent Kd of 85 +/- 14 pM and a Bmax of 231,000 +/- 71,000 receptors/gastrin cell. Nonradioactive [Tyr4]-bombesin and related analogs inhibited the specific binding of the tracer in a dose-related manner. The rank order of potency, determined at the IC50, of [Tyr4]-bombesin and related analogs for inhibition of specific binding was bombesin greater than [Tyr4]-bombesin = hGRP-27 greater than GRP-10 greater than ranatensin much greater than neuromedin B. Cholecystokinin, somatostatin, substance K, and kassinin each tested at a concentration of 1 microM did not inhibit bombesin binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The binding of somatostatin-14 (S-14) to rat pancreatic acinar cell membranes was characterized using [125I-Tyr11]S-14 as the radioligand. Maximum binding was observed at pH 7.4 and was Ca2+-dependent. Such Ca2+ dependence of S-14 receptor binding was not observed in other tissues. Scatchard analysis of the competitive inhibition by S-14 of [125I-Tyr11]S-14 binding revealed a single class of high affinity sites (Kd = 0.5 +/- 0.07 nM) with a binding capacity (Bmax) of 266 +/- 22 fmol/mg of protein. [D-Trp8]S-14 and structural analogs with halogenated Trp moiety exhibited 2-32-fold greater binding affinity than S-14, [D-F5-Trp8]S-14 being the most potent. [Tyr11]S-14 was equipotent with S-14. The affinity of somatostatin-28 for binding to these receptors was 50% of that of S-14. Cholecystokinin octapeptide (CCK-8) inhibited the binding of [125I-Tyr11]S-14, but its inhibition curve was not parallel to that of S-14. In the presence of 1 nM CCK-8, the Bmax of S-14 receptors was reduced to 150 +/- 17 fmol/mg of protein. Dibutyryl cyclic GMP, a CCK receptor antagonist, partially reversed the inhibitory action of CCK-8, suggesting that CCK receptors mediate the inhibition of S-14 receptor binding. GDP, GTP, and guanyl-5'-yl imidodiphosphate inhibit S-14 receptor binding in this tissue. The inhibition was shown to be due to decrease in binding capacity and not due to change in affinity. Specifically bound [125I-Tyr11]S-14 cross-linked to the S-14 receptors was found associated with three proteins of approximate Mr = 200,000, 80,000, and 70,000 which could be detected under both reducing and nonreducing conditions. Finally, pancreatic acinar cell S-14 receptors were shown to be down-regulated by persistent hypersomatostatinemia 1 week after streptozotocin-induced diabetes characterized by decreased Bmax (105 +/- 13 fmol/mg of protein) without any change in affinity. We conclude that pancreatic acinar cell membrane S-14 receptors require Ca2+ for maximal binding and thus differ from S-14 receptors in other tissues, S-14 receptors in this tissue also exhibit selective ligand specificities, these receptors are regulated by CCK-8 and guanine nucleotides, three receptor proteins of apparent Mr = 200,000, 80,000, and 70,000 specifically bind S-14, and (v) these receptors are regulated by S-14 in vivo as evidenced by decreased binding in streptozotocin diabetic rats characterized by hypersomatostatinemia.  相似文献   

8.
Somatostatin inhibited secretin-stimulated cyclic AMP formation in pancreatic acinar cells. The inhibition was only partial. Maximal inhibition reached about 50%. Somatostatin analogs tested inhibited secretin-stimulated cyclic AMP formation with a lower potency than somatostatin. Cys-Aza Ala-Phe-Phe-DTrp-Lys-Thr-Phe-Phe-Cys was found to be an antagonist of somatostatin in inhibiting secretin-stimulated cyclic AMP. Analogs inhibited the binding of 125I-[Tyr11] somatostatin to pancreatic acini. There was a good correlation (r = 0.97) between concentration for inhibiting 50% secretin-stimulated cyclic AMP and receptor binding affinities.  相似文献   

9.
Two populations of brain somatostatin (SS) receptors, one with high affinity for the somatostatin octapeptide analogue SMS 201-995 (SS1 type) and one poorly sensitive to this analogue (SS2 type) have been characterised in regard to their ionic requirements using two radioligands, the iodinated Tyr3 derivative of the octapeptide SS analog SMS 201-995 and the iodinated [Tyr11]-SS. Specific binding of 125I-[Tyr11]-SS to rat cortex membrane homogenates can be increased by approximately 180% in presence of 5 mM Mg2+. The increase in number of binding sites seen by Mg2+ is not accompanied by a marked increase in affinity for SS but for SMS 201-995: the low affinity binding for SMS 201-995 seen in absence of Mg2+ is replaced in part by higher affinity binding in presence of these ions. SMS 201-995 sensitive SS1 receptor subpopulation measured with 125I-204-090, a specific ligand for SS1 subpopulation, is massively increased in presence of Mg2+. However, SMS 201-995 insensitive SS2 receptor population measured with 125I-[Tyr11]-SS in presence of excess SMS 201-995 is unchanged in presence of Mg2+. The Mg2+-dependency can also be observed with autoradiography for extra cortical, i.e. hippocampal, brain SS receptors. 120 mM Na+ does not affect the total brain SS receptor population, but reduces the specific binding of SS1 receptors and increases that of SS2 receptors. Therefore, the rat brain, in particular the cortex, possesses a SMS 201-995-sensitive, Mg2+-dependent SS receptor subpopulation (SS1) as well as a SMS 201-995-insensitive, Mg2+-independent SS population (SS2).  相似文献   

10.
J C Reubi 《Life sciences》1985,36(19):1829-1836
Cyclic octapeptide analogues of somatostatin (SS) like SMS 201-995 [H-(D) Phe-Cys-Phe-(D) Trp-Lys-Thr-Cys-Thr(ol)] or its Tyr3-derivative 204-090, displaced [125I-Tyr11]-SS 100% from pancreatic membranes but only 62-75% from brain membranes; the remaining sites were displaced by SS. These data indicate that some mini-somatostatins bind to a subpopulation of SS receptors in rat brain. The iodinated Tyr3-derivative (125I-204-090) can be considered a selective radioligand for one rat brain SS receptor subpopulation: It shows saturable and high affinity binding (KD = 0.29 nM; Bmax = 350 fmoles/mg protein) to rat cortex. The pharmacological properties of 125I-204-090 binding sites are similar to those of [125I-Tyr11]-SS sites. Distribution of these sites correspond to SS receptor-rich areas such as cortex, hippocampus, striatum, pituitary, pancreatic beta-cell. SS as well as SMS 201-995 bind to these sites with high affinity. The stability and high specific vs non-specific binding ratio makes 204-090 a radioligand of choice to measure this SS receptor subpopulation in CNS but also the SS receptors in pituitary and pancreas.  相似文献   

11.
The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We have synthesized two photoreactive derivatives of somatostatin, namely [125I-Tyr11,azidonitrobenzoyl (ANB)-Lys4]somatostatin and [125I-Tyr11,ANB-Lys9]somatostatin, and used them to characterize somatostatin receptors biochemically in several cell types. Saturation binding experiments carried out in the dark demonstrated that [125I-Tyr11,ANB-Lys4]somatostatin bound with high affinity (KD = 126 +/- 39 pM) to a single class of binding sites in GH4C1 pituitary cell membranes. The affinity of this analog was similar to that of the unsubstituted peptide [125I-Tyr11]somatostatin (207 +/- 3 pM). In contrast, specific binding was not observed with [125I-Tyr11,ANB-Lys9]somatostatin. The binding of both [125I-Tyr11,ANB-Lys4]somatostatin and [125I-Tyr11]somatostatin was potently inhibited by somatostatin (EC50 = 300 pM) whereas at 100 nM unrelated peptides had no effect. Furthermore, both pertussis toxin treatment and guanyl-5'yl imidophosphate (Gpp(NH)p) markedly reduced [125I-Tyr11,ANB-Lys4]somatostatin binding. Thus, [125I-Tyr11,ANB-Lys4]somatostatin binds to G-protein coupled somatostatin receptors with high affinity. To characterize these receptors biochemically, GH4C1 cell membranes were irradiated with ultraviolet light following the binding incubation, and the labeled proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. A major band of 85 kDa was specifically labeled with [125I-Tyr11,ANB-Lys4]somatostatin but not with [125I-Tyr11,ANB-Lys9]somatostatin or [125I-Tyr11]somatostatin. The binding affinity of the 85-kDa protein for [125I-Tyr11,ANB-Lys4]somatostatin was very high (Kd = 34 pM). Labeling of this protein was inhibited competitively by somatostatin (EC50 = 140 +/- 80 pM) but not by unrelated peptides. Furthermore, this band was not labeled in pertussis toxin-treated membranes or in untreated membranes incubated with Gpp(NH)p. Finally, [125I-Tyr11,ANB-Lys4]somatostatin specifically labeled bands of 82, 75, and 72 kDa in membranes prepared from mouse pituitary AtT-20 cells, rat pancreatic acinar AR4-2J cells, and HIT hamster islet cells, respectively. Thus, [125I-Tyr11,ANB-Lys4]somatostatin represents the first photolabile somatostatin analog able to bind to receptors with high affinity. Our studies demonstrate that this novel peptide covalently labels specific somatostatin receptors in a variety of target cell types.  相似文献   

13.
Somatostatin binding to its receptors on rat pancreatic acinar membranes was characterized with [125I-Tyr1]somatostatin. Binding at 24 degrees C was rapid reaching a maximum after 60 min and was reversible upon the addition of 1 microM unlabeled ligand. Scatchard analysis revealed a single class of binding sites, with a Kd of 0.32 +/- 0.03 nM and a binding capacity of 600 +/- 54 fmol/mg of protein. Specificity for the somatostatin was demonstrated with the inhibition of labeled hormone binding by somatostatin analogs in proportion to their biological activities. When [125I-Tyr1]somatostatin was cross-linked to its receptors with the photoreactive cross-linker n-hydroxysuccinimidyl-4-azidobenzoate, the hormone was associated with Mr = 90,000 protein. Similar mobilities of the radioactive band were observed in the presence and absence of dithiothreitol. In contrast to other unrelated peptides, cholecystokinin (CCK) and its analogs directly reduced [125I-Tyr1] somatostatin binding to isolated membranes. The effect of CCK was one-half-maximal at 3 nM and maximal at 100 nM. In the presence of 3 nM CCK8, the binding capacity for somatostatin was decreased to 237 +/- 39 fmol/mg of protein without a significant change in affinity. Dibutyryl cyclic GMP, a CCK receptor antagonist, blocked this action of CCK8 indicating that the CCK receptor mediated the decrease in [125-Tyr1]somatostatin binding. In contrast cerebral cortex membranes, which also possess a somatostatin receptor, were not regulated by CCK. These results indicate, therefore, that 1) purified pancreatic acinar plasma membranes contain specific receptors for somatostatin, 2) the receptor has an apparent Mr of about 90,000, and 3) the binding of somatostatin to its receptor on pancreatic plasma membranes is regulated by CCK analogs acting via the CCK receptor.  相似文献   

14.
A series of cyclic conformationally restricted penicillamine containing somatostatin octapeptide analogues have been prepared by standard solid phase synthetic techniques and tested for their ability to inhibit specific [125I]CGP 23,996 (des-Ala1-,Gly2-[desamino-Cys3Tyr11]-dicarba3, 14-somatostatin), [3H]naloxone or [3H]DPDPE ([D-Pen2-D-Pen5]enkephalin) binding in rat brain membrane preparations. We now report structure-activity relationship studies with the synthesis of our most potent and selective mu opioid receptor compound D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, which we refer to as Cys2Tyr3Orn5Pen7-amide. While this octapeptide exhibited high affinity (IC50 = 2.80 nM) for an apparently single population of binding sites (nH = 0.89 +/- 0.1) and exceptional selectivity for mu opioid receptors with an IC50(DPDPE)/IC50 (naloxone) ratio of 4,829, it also displayed very low affinity for somatostatin receptors (IC50 = 22,700 nM). Thus, Cys2Tyr3Orn5Pen7-amide may be the ligand of choice for further characterization of mu opioid receptors and for examining the physiological role of this class of receptors.  相似文献   

15.
The solubilization of somatostatin receptors from guinea-pig pancreas by different non-denaturing detergents was investigated after stabilization of the receptors by prior binding of 125I-[Tyr11]somatostatin or its analogue 125I-[Leu8,DTrp22,Tyr25]somatostatin 28, to pancreatic plasma membranes. The somatostatin-receptor complexes were solubilized in a high yield by Zwittergent 3-14 (3-[tetradecyldimethylammonio]-1-propanesulfonate), a zwitterionic detergent. Other detergents, digitonin, Triton X-100, Chaps (3-[cholamidopropyldimethylammonio]-1-propanesulfonate) and octyl beta-D-glycopyranoside, achieved only partial solubilization. The recovery of receptor complexes was increased by glycerol. In order to characterize solubilized somatostatin-receptor complexes, membranes receptors were covalently labelled using N-5-azido-2-nitrobenzoyloxysuccinimide as cross-linking reagent before solubilization. Gel filtration chromatography analysis resulted in the identification of a major protein component of apparent Mr = 93,000 which interacted with the two radioligands. In addition, a similar component of Mr = 88,000 was characterized after analysis by SDS-PAGE of membrane receptors covalently cross-linked with 125I-[Leu8,DTrp22,Tyr25]somatostatin 28 by different heterobifunctional reagents: N-5-azido-2-nitrobenzoyloxysuccinimide, N-hydroxysuccinimidyl 4-azidobenzoate, N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate. Optimal cross-linking results were obtained with N-5-azido-2-nitrobenzoyloxysuccinimide. The solubilized somatostatin-receptor complex was adsorbed to wheat-germ agglutinin-agarose column and eluted by specific sugars. We concluded that the guinea-pig pancreatic somatostatin receptor in the membrane and in the non-denaturing detergent solution behaves as a protein monomer of apparent Mr approximately 85,000-90,000. The somatostatin receptor is a glycoprotein which contains complex-type carbohydrate chains.  相似文献   

16.
Somatostatin receptors in the rat pituitary gland were characterized by binding analysis with a radioiodinated high affinity somatostatin analogue, 125I-Tyr1[D-Trp8]somatostatin. Receptor binding of this derivative reached equilibrium at 30 min and was maintained at a plateau for at least 60 min. Two L-Trp8- labeled somatostatin analogues. 125I-Tyr1- and [125I-Tyr11]somatostatin, displayed less stable and lower specific uptake and higher nonspecific binding. In contrast to the rapid degradation of the L-Trp8 ligands during binding assay, 125I-Tyr1]D-Trp8]somatostatin retained more than 80% of its binding activity after 90 min of incubation with pituitary particles. Pituitary particles bound 125I-Tyr1]D-Tyr8]somatostatin with high affinity (Ka = 8.6 +/- 1.2 X 10(9) M-1) and capacity of 54.4 +/- 2.6 fmol/mg. These binding sites showed specificity for the native peptide and its active analogues, and other peptide hormones, including angiotensin II, thyrotropin-releasing hormone, vasopressin, oxytocin, substance P, and gonadotropin-releasing hormone, did not inhibit tracer binding. A good correlation was observed between the binding affinities of several somatostatin analogues and their potencies as inhibitors of growth hormone release in rat pituitary cells. These findings emphasize the physiological importance of the pituitary somatostatin receptor in mediating the inhibitory action of the peptide on growth hormone release. The use of Tyr1[d-Trp8]somatostatin as a labeled ligand permits accurate determinations of the binding affinity and concentration of receptors for somatostatin in the normal pituitary gland and provides a basis for further studies of somatostatin receptor regulation and receptor-mediated cellular effects of the tetradecapeptide.  相似文献   

17.
Somatostatin (SRIF) is a putative peptide neurotransmitter that may interact with brain capillaries following neurosecretion of the peptide. The present studies investigate the binding and metabolism of SRIF analogues in isolated bovine brain microvessels. 125I-[Tyr1]SRIF was rapidly degraded by capillary aminopeptidase with a half-time of approximately 3 min at 23 degrees C. The microvessel aminopeptidase had a low affinity and high capacity for the peptide, Km = 76 microM and Vmax = 74 nmol min-1 mgp-1. 125I-[Tyr11]SRIF was converted to free iodotyrosine at a much slower rate, presumably by a lower-activity endopeptidase. 125I-[Try11]SRIF was rapidly bound by microvessels, whereas another basic peptide, [Tyr8]bradykinin, or an acidic peptide, CCK8, or a neutral peptide, leucine enkephalin, were bound to a considerably less extent. The binding of 125I-[Tyr11]SRIF to the capillaries was nonsaturable up to a concentration of 1 microgram/ml of unlabeled peptide, and the binding reaction was extremely rapid, reaching equilibrium within 5 s at either 0 degrees C or 37 degrees C. Approximately 20% of the SRIF bound by the microvessels was resistant to acid wash and presumably represented internalized peptide. In addition, the 125I-[Tyr11]SRIF bound rapidly to the endothelial cytoskeleton remaining after a 1% Triton X-100 extraction of the microvessels. The peptide-cytoskeletal binding reaction was nonsaturable up to 1 microgram/ml of unlabeled [Tyr11]SRIF, but it was inhibited by 0.5% polylysine or 0.8 M KCl and was stimulated by 1 mM dithiothreiotol. These studies suggest that brain microvessels rapidly sequester and degrade SRIF analogues and that this may represent one mechanism for rapid inactivation of the neuropeptides subsequent to neurosecretion.  相似文献   

18.
Somatostatin binding sites have been demonstrated in the cytosolic fraction of guinea-pig lung. Binding of 125I-Tyr11-somatostatin was dependent on time and temperature, saturable, reversible and highly specific. Under equilibrium condition, i.e. 60 min at 25 degrees C, native somatostatin inhibited tracer binding in a dose-dependent manner. Two types of somatostatin binding sites were defined by Scatchard analysis: a small population with a high affinity (Kd = 23.4 nM) and a large population with a low affinity (Kd = 253.5 nM) for somatostatin. The biphasic nature of the dissociation process confirmed the heterogeneity of somatostatin binding sites. Apart from somatostatin, no peptide (1 microM) tested influenced the binding of 125I-Tyr11-somatostatin. The present data represent the first analysis of somatostatin binding sites in lung.  相似文献   

19.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

20.
The role of somatostatin and its mechanism of action in the retina remains an important target for investigation. Biochemical and pharmacological studies were engaged to characterize the somatostatin receptors in the rabbit retina, and their coupling to G-proteins. The ability of selective ligands to inhibit [125I]Tyr11-somatostatin-14 binding to rabbit retinal membranes was examined. The sst2 analogues SMS201-995, MK678, and BIM23014, displayed IC50 values of 0.28 +/- 0.12, 0.04 +/- 0.01 and 1.57 +/- 0.39 nm, respectively. The sst1 analogue CH275 moderately displaced the [125I]Tyr11-somatostatin-14 binding, while selective analogues for sst3, sst4 and sst5 had minimal effect. Immunoblotting and/or immunohistochemistry studies revealed the presence of the pertussis toxin sensitive Gi1/2, and Go proteins, as well as Gs. Somatostatin-14 and MK678 stimulated GTPase activity in a concentration-dependent manner with EC50 values of 42.8 +/- 16.8 and 70.0 +/- 16.5 nm, respectively, thus supporting the functional coupling between the receptor and the G-proteins. CH275 stimulated the GTPase activity moderately, in agreement with its binding profile. The antisera raised against Goalpha and Gi1/2alpha inhibited the somatostatin-induced high-affinity GTPase activity, but only anti-Goalpha inhibited the MK678 stimulation of the enzyme. These results suggest that somatostatin mediates its actions in the rabbit retina by interacting mainly with sst2 receptors that couple to Goalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号