首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To go further into the characterization of the proteolysis exocellular system of the salmonid pathogen Flavobacterium psychrophilum, the purification and characterization of a novel protease designated Fpp2 (F. psychrophilum protease 2) was undertaken. A protease (Fpp2) hydrolyzing azocasein was purified. The Fpp2 can be defined as a metalloprotease, it had an estimated molecular mass of 62 kDa with calcium playing an important role in the thermostability of the enzyme. Proteolytic activity was optimal at pH 6.0-7.0 and 24 degrees C and activation energy for the hydrolysis of azocasein was determined to be 5.4 kcal mol(-1), being inactive at temperatures above 42 degrees C. All these results are characteristic of 'cold adapted enzymes'. Fpp2 proved to be a broad range hydrolytic enzyme because in optimal conditions it was able to hydrolyze matrix and muscular proteins. It can be concluded that the Fpp1, a previously characterized 55 kDa metalloprotease, and the Fpp2 protease were produced under different physiological conditions and were immunologically as well as biochemically different.  相似文献   

2.
Flavobacterium psychrophilum infection in salmonid fish, known as rainbow trout fry syndrome (RTFS) or bacterial coldwater disease (BCWD), is widespread in fish farms and natural waters. Despite many studies in which attempts at infection were made, an adequate method of infection has not yet been established. In this study, we evaluated a bath infection method in which we used bacteria at different stages of growth in the infection of rainbow trout Oncorhynchus mykiss. Rainbow trout with a mean body weight of 1.3 or 5.6 g, respectively, were infected by immersion in a bacterial suspension at different stages of growth (18 to 66 h shaking culture at 15 degrees C). The fish immersed in a logarithmic phase culture showed higher mortality than those in other culture phases. Indeed, 1.3 and 5.6 g fish showed typical clinical signs including ulcerative tissue of the trunk and lack of caudal fin edge. F. psychrophilum was detected by immunohistochemistry (IHC) in these tissue samples. These results indicate that experimental bath infection using a logarithmic phase bacterial solution is the most appropriate method for studies of infectious mechanisms.  相似文献   

3.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

4.
A novel protease, hydrolyzing azocasein, was identified, purified, and characterized from the culture supernatant of the fish pathogen Yersinia ruckeri. Exoprotease production was detected at the end of the exponential growth phase and was temperature dependent. Activity was detected in peptone but not in Casamino Acid medium. Its synthesis appeared to be under catabolite repression and ammonium control. The protease was purified in a simple two-step procedure involving ammonium sulfate precipitation and ion-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified protein indicated an estimated molecular mass of 47 kDa. The protease had characteristics of a cold-adapted protein, i.e., it was more active in the range of 25 to 42 degrees C and had an optimum activity at 37 degrees C. The activation energy for the hydrolysis of azocasein was determined to be 15.53 kcal/mol, and the enzyme showed a rapid decrease in activity at 42 degrees C. The enzyme had an optimum pH of around 8. Characterization of the protease showed that it required certain cations such as Mg(2+) or Ca(2+) for maximal activity and was inhibited by EDTA, 1,10-phenanthroline, and EGTA but not by phenylmethylsulfonyl fluoride. Two N-methyl-N-nitro-N-nitrosoguanidine mutants were isolated and analyzed; one did not show caseinolytic activity and lacked the 47-kDa protein, while the other was hyperproteolytic and produced increased amounts of the 47-kDa protein. Azocasein activity, SDS-PAGE, immunoblotting by using polyclonal anti-47-kDa-protease serum, and zymogram analyses showed that protease activity was present in 8 of 14 strains tested and that two Y. ruckeri groups could be established based on the presence or absence of the 47-kDa protease.  相似文献   

5.
The aims of this study were to identify a psychrotrophic bacterium, strain CR41, producing a cold adapted protease during growth at low temperatures and to evaluate the ability of the cells to hydrolyze hake fish protein. The strain was isolated from the intestinal tract of hake collected from the San Jorge Gulf (Patagonia, Argentina) and it was identified as Pseudoalteromonas. Growth and fish protein hydrolysis were determined using an aerated simple mineral medium plus 10% fish protein concentrate. Proteolytic activity was measured at 7 and 22 degrees C during culture in the concentrate. Protease production started in the exponential growth phase and reached a maximum during stationary phase. Protease activity at 7 degrees C was lower than at 22 degrees C. After 8 h of incubation, the percentage of hydrolyzed protein was 84% at 7 degrees C and 95% at 22 degrees C. Electrophoresis detection showed that degradation of muscle hake proteins was complete at both temperatures, and in gelatin zymograms extracellular activity showed two proteolytic bands with apparent molecular masses of approximately 31.6 and 62 kDa.  相似文献   

6.
The infection route of Flavobacterium psychrophilum into rainbow trout Oncorhynchus mykiss was studied using bath and cohabitation challenges as well as oral challenge with live feed as a vector. Additionally, the number of bacterial cells shed by infected fish into the surrounding water was determined in the cohabitation experiment and in challenge experiments at 3 different water temperatures. The experiments showed that skin and skin mucus abrasion dramatically enhanced the invasion of F. psychrophilum into the affected fish in bath and cohabitation challenges. Disruption of the skin is discussed as an important invasion route for F. psychrophilum into the fish. The shedding rate of F. psychrophilum by infected fish was associated with water temperature and the mortality of the infected fish. High numbers of F. psychrophilum cells were released into the water by dead rainbow trout during a long time period compared to the numbers of cells shed by live fish. The results emphasise the importance of removing dead and moribund fish from rearing tanks in order to diminish the infection pressure against uninfected fish in commercial fish farms. In immunohistochemical examinations of organs and tissues of orally infected fish, F. psychrophilum cells were detected in only 1 fish out of 31 studied. Mortality of the orally challenged fish was not observed in the experiment.  相似文献   

7.
Bacillopeptidase F is an extracellular serine protease that is expressed at the beginning of the stationary phase. To study its structure, regulation of expression, and physiological roles, we have cloned and characterized the structural gene (bpf) encoding this protease from Bacillus subtilis. DNA sequence analysis suggests this protease is synthesized as a preproenzyme (Mr = 92,000). Through processing at both the NH2 and COOH termini, it is gradually converted into various forms with molecular mass ranging from 80 to 48 kDa. Shortening the 3' end of bpf demonstrates that at least 290 amino acid residues from the COOH-terminus of bacillopeptidase F are not required for either catalytic activity or secretion. Bacillopeptidase F exhibits sequence similarity with several serine proteases. Its gene is found immediately downstream from the fts operon which was mapped at 135 degrees on the B. subtilis genetic linkage map. Inactivation of the chromosomal copy of bpf shows no effect on cell growth and sporulation. A triple protease-deficient strain (WB300 with the structural genes for bacillopeptidase F and two other major proteases inactivated) was constructed to serve as a better expression host for the production and secretion of foreign proteins.  相似文献   

8.
Proteolytic activity was detected in the culture supernatant of a newly isolated, extremely thermophilic bacterium belonging to the genus Thermus, and tentatively named T. caldophilus sp. n. strain GK24. The enzyme activity continued to increase for at least three days after cells reached the stationary phase of growth. Purification of the proteolytic enzyme was tried with ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. The most purified enzyme fraction thus obtained appeared to be homogeneous in a chromatographic analysis, but still had seven bands of proteins on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Treatment of the protease with denaturing reagents or organic solvents did not alter the chromatographic profile and the purified enzyme sample showed a large sedimentation coefficient of about 11S. The optimal pH of the hydrolytic activity of the enzyme was observed at around 7.8 for casein and 7.2 for N-carbobenzoxy-L-leucyl-L-tyrosinamide (Z-Leu-Tyr-NH2). The enzyme was stable in the pH range of 5 to 11 for 1 day at 4 degrees C or for 1 h at 70 degrees C. The enzyme sample showed a maximal activity at 90 degrees C and had an extreme stability toward treatment by heat and denaturing reagents. The enzyme sample was inactivated almost completely by diisopropyl fluorophosphate (DFP), but not by ethylenediaminetetraacetic acid (EDTA) or ethylene glycol-bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA). From these results, the enzyme seems to be a serine protease, and not to be a metallo-enzyme such as thermolysin. The enzyme also was hydrolytic active toward an ester compound, N-benzoyl-L-tyrosine ethyl ester (BTEE), but not toward N-benzoyl-L-arginine ethyl ester (BAEE).  相似文献   

9.
Flavobacterium psychrophilum, a member of the Cytophaga-Flavobacterium-Bacteroides group, is an important pathogen of salmonid fish. Previous attempts to develop genetic techniques for this fastidious, psychrotrophic bacterium have met with failure. Here we describe the development of techniques for the genetic manipulation of F. psychrophilum and the identification of plasmids, selectable markers, a reporter system, and a transposon that function in several isolates of this fish pathogen. The antibiotic resistance genes ermF, cfxA, and tetQ function in F. psychrophilum. Cloning vectors based on the F. psychrophilum cryptic plasmid pCP1 which carried these selectable markers were introduced by conjugation from E. coli, resulting in antibiotic-resistant colonies of F. psychrophilum. Conjugative transfer of DNA into F. psychrophilum was strain dependent. Efficient transfer was observed for two of the seven strains tested (THC02-90 and THC04-90). E. coli lacZY functioned in F. psychrophilum when expressed from a pCP1 promoter, allowing its development as a reporter for studies of gene expression. Plasmids isolated from F. psychrophilum were efficiently introduced into F. psychrophilum by electroporation, but plasmids isolated from E. coli were not suitable for transfer by this route, suggesting the presence of a restriction barrier. DNA isolated from F. psychrophilum was resistant to digestion by Sau3AI and BamHI, indicating that a Sau3AI-like restriction modification system may constitute part of this barrier. Tn4351 was introduced into F. psychrophilum from E. coli and transposed with apparent randomness, resulting in erythromycin-resistant colonies. The techniques developed in this study allow for genetic manipulation and analysis of this important fish pathogen.  相似文献   

10.
Wang HT  Hsu JT 《Anaerobe》2005,11(3):155-162
In this study, Prevotella ruminicola 23 (ATCC 19189), a ruminal proteolytic bacterium, was used as protease producer to examine the optimal condition for protease production. The best carbon and nitrogen sources for the maximum growth were glucose with peptone. Both sucrose and glucose could stimulate high protease production. Casein and peptone are better nitrogen sources for protease production than other choice in this study. The best enzyme production condition was 18-20 h incubation which was at late log phase in the broth of 5% glucose or sucrose as carbon source with 0.1% ammonium chloride and 0.2% peptone as nitrogen sources. Most of the protease activity was secreted into broth (65%) and on cell surface (18%). The optimal temperature and pH for protease reaction were 40 degrees C and pH 6.8, respectively. After incubation for 6h, the crude extract maintained 50% of original protease activity at 30 and 50 degrees C, and protease activity was stable between pH 6 and 8. The protease inhibitor test showed that serine, aspartic acid and metallo-protease inhibitors could cause inhibition of proteolysis. Protein feedstuff degradation experiments suggested that protease in crude extract had higher degradation ability on fish meal, whey, and feather meal (2.39, 2.60 and 1.76 micromol aminoacid/mg enzyme/h) in comparison to soybean meal and blood meal (1.11 and 1.09 micromol aminoacid/mg enzyme/h). The protease in the crude extract should have application potential in term of improving utilization of fish meal and feather meal for monogastric animals.  相似文献   

11.
Bacteriocin release proteins (BRPs) can be used for the release of heterologous proteins from the Escherichia coli cytoplasm into the culture medium. The gene for a highly thermostable alkaline protease was cloned from Bacillus stearothermophilus F1 by the polymerase chain reaction. The recombinant F1 protease was efficiently excreted into the culture medium using E. coli XL1-Blue harboring two vectors: pTrcHis bearing the protease gene and pJL3 containing the BRPs. Both vectors contain the E. coli lac promoter-operator system. In the presence of 40 microM IPTG, the recombinant F1 protease and the BRP were expressed and mature F1 protease was released into the culture medium. This opens the way for the large-scale production of this protease in E. coli. The recombinant enzyme was purified through a one-step heat treatment at 70 degrees C for 3h and this method purified the protease to near homogeneity. The purified enzyme showed a pH optimum of 9.0, temperature optimum of 80 degrees C, and was stable at 70 degrees C for 24h in the pH range from 8.0 to 10.0. The enzyme exhibited a high degree of thermostability with a half-life of 4 h at 85 degrees C, 25 min at 90 degrees C, and was inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF).  相似文献   

12.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

13.
A native-feather-degrading thermophilic anaerobe was isolated from a geothermal hot stream in Indonesia. Isolate AW-1, identified as a member of the species Fervidobacterium islandicum, was shown to degrade native feathers (0.8%, w/v) completely at 70 degrees C and pH 7 with a maximum specific growth rate (0.14 h(-1)) in Thermotoga- Fervidobacterium(TF) medium. After 24 h of culture, feather degradation led to an increase in free amino acids such as histidine, cysteine and lysine. Moreover, nutritionally essential amino acids such as tryptophan and methionine, which are rare in feather keratin, were also produced as microbial metabolites. A homomultimeric membrane-bound keratinolytic protease (>200 kDa; 97 kDa subunits) was purified from a cell extract of F. islandicum AW-1. The enzyme exhibited activity toward casein and soluble keratin optimally at 100 degrees C and pH 9, and had a half-life of 90 min at 100 degrees C. The enzyme showed higher specific activity for the keratinous substrates than other proteases and catalyzed the cleavage of peptide bonds more rapidly following the reduction of disulfide bridges in feather keratin by 10 mM dithiothreitol. Therefore, the enzyme from F. islandicum AW-1 is a novel, thermostable keratinolytic serine protease.  相似文献   

14.
Bacterial cold water disease in the ayu Plecoglossus altivelis caused by Flavobacterium psychrophilum is a serious problem in the Japanese freshwater culture industry. The distribution and activity of this bacterium on the body surface of the ayu in the infection process was investigated. The survival of F. psychrophilum in tap water showed that this bacterium might sustain its infectivity for 24 h. In an experimental infection, juvenile ayu were immersed in water containing 10(8.9) CFU/ml F. psychrophilum, and the progressing infection was followed by scanning electron microscopy during a 24-h period. This bacterium was observed in the ayu for 24 h adhering to the lower jaw and caudal peduncle, where the epidermis tissue was collapsed. This study showed that bacterial suspension in water sustains the activity of this bacterium. F. psychrophilum attaches especially to the jaw and caudal peduncle, growing at these sites, collapsing the dermal structure and invading the tissues.  相似文献   

15.
A novel haloalkaliphilic, thermostable serine protease was purified from the extreme halophilic archaeon, Halogeometricum borinquense strain TSS101. The protease was isolated from a stationary phase culture, purified 116-fold with 18% yield and characterized biochemically. The molecular mass of the purified enzyme was estimated to be 86 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10.0 in 20% NaCl. The enzyme had high activity over the pH range from 6.0 to 10.0. Enzymatic activity was strongly inhibited by 1 mM phenyl methylsulfonyl fluoride, but activity was increased 59% by 0.1% cetyltrimethylammonium bromide. The enzyme exhibited relatively high thermal stability, retaining 80% of its activity after 1 h at 90 degrees C. Thermostability increased in the presence of Ca2+. The stability of the enzyme was maintained in 10% sucrose and in the absence of NaCl.  相似文献   

16.
The nutritional and environmental factors relating to the production of an extracellular protease by Bacillus polymyxa were investigated. The enzyme was produced in all media that supported growth of the microorganism, irrespective of the carbon source used. Arabinose and hydrolyzed starch, however, gave highest yields. The nature of the peptone had a significant effect on the level of protease produced. Calcium and manganous ions exerted a beneficial effect on protease production. Highest enzyme levels were obtained when the initial pH of the medium was within the range 5.9 to 7.0. When the pH of the medium was not controlled during the fermentation, the accumulation of the enzyme paralleled the growth of the microorganism and reached a maximum towards the end of the exponential phase. With a fixed pH of 6.8, the level of protease was only one-fifteenth of that obtained when the culture was allowed to maintain its own pH. In addition, accumulation of the protease reached a maximum somewhat earlier, i.e., in the mid-log phase of growth. A 70-fold increase in the specific activity of the protease was obtained by ammonium sulfate and acetone fractionation followed by gel filtration on Sephadex G-100. The purified protease behaved as a homogenous entity when eluted by a sodium chloride gradient from CM-cellulose at pH 6.9. An overall enzyme recovery of 60% was obtained.  相似文献   

17.
Serine proteases play crucial roles in erythrocyte invasion by merozoites of the malaria parasite. Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) is synthesized during maturation of the intraerythrocytic parasite and accumulates in a set of merozoite secretory organelles, suggesting that it may play a role in host cell invasion or post-invasion events. We describe the production, purification, and characterization of recombinant PfSUB-1 and comparison with the authentic protease detectable in parasite extracts. The recombinant protease requires high levels of calcium for optimum activity and has an alkaline pH optimum. Using a series of decapeptide and protein substrates, PfSUB-1 was found to have a relaxed substrate specificity with regard to the P1 position but is unable to efficiently cleave substrates with a P1 leucine residue. Similarly, replacement of a P4 valine with alanine severely reduced cleavage efficiency, whereas its replacement with lysine abolished cleavage. In all respects investigated, the recombinant protease was indistinguishable from parasite-derived enzyme. Three-dimensional homology modeling of the PfSUB-1 catalytic domain based on an alignment with closely related bacterial subtilisins and an orthologue from the rodent malaria Plasmodium yoelii suggests that the protease has at least three potential calcium ion-binding sites, three intramolecular disulfide bridges, and a single free cysteine within the enzyme S1 pocket. A predicted highly polar S1 pocket and a hydrophobic S4 subsite are in broad agreement with the experimentally determined substrate specificity.  相似文献   

18.
Baltic salmon brood fish were investigated for the presence of Flavobacterium psychrophilum in the kidney, spleen, brain and sexual products (ovarian fluid, unfertilised eggs and milt). Samples for bacteriology were taken at capture, when the fish were ascending their native river to spawn, and after a period of captivity in indoor pools, at stripping. During captivity, abnormal wiggling behaviour was recorded in some of the fish. Bacterial samples were taken to determine if F. psychrophilum had any role in the aetiology of the condition. Furthermore, the presence of F. psychrophilum on egg surfaces during incubation was investigated. F. psychrophilum was isolated from internal organs and/or sexual products in 7 out of 50 (14.0%) fish sampled at capture and 63 out of 272 (23.2%) fish sampled at stripping. The bacteria was isolated from either spleen or gonads in 2 out of 19 (10.5%) fish with abnormal wiggling behaviour but no bacteria was isolated from the brain. No F. psychrophilum was isolated from eggs at the eyed stage. Just before hatching, the bacterium was isolated from 5 out of 15 (33.3%) family groups. The present study shows that Baltic salmon brood fish are carriers of F. psychrophilum during their spawning migration. The presence of the bacteria in sexual products from both females and males indicates that transmission from the brood fish to the offspring should be considered an important route of infection.  相似文献   

19.
20.
The production of dextransucrase fromLeuconostoc mesenteroides NRRL B-512F was stimulated 2-fold by the addition of 0.005% of calcium chloride to the medium; levansucrase levels were unaffected. Dextransucrase was purified by concentration and dialysis of the culture supernatant with a Bio-Fiber 80 miniplant, and by treatment with dextranase followed by chromatography on Bio-Gel A-5m. A 240-fold purification, with a specific activity of 53 U/mg, was obtained. Contaminating enzyme activities of levansucrase, invertase, dextranase, glucosidase, and sucrose phosphorylase were decreased to non-detectable levels. Poly(acrylamide)-gel electrophoresis of the purified enzyme showed only two protein bands, both of which had dextransucrase activity. These bands also gave a carbohydrate stain, indicating that the dextransucrase could be a glycoprotein. Acid hydrolysis, followed by paper chromatography, of the purified enzyme showed that the major carbohydrate was mannose. ConcanavaIin A completely removed dextransucrase activity from solution, confirming the mannoglycoprotein character of the enzyme. Dextransucrase activity was not altered by the addition of 0.008?4 mg/ml of dextran, but its storage stability was increased by the addition of 4 mg/ml of dextran. As previously shown by others, the activity of dextransucrase was decreased by EDTA, and was restored by the addition of calcium ions. Zinc, cadmium, lead, mercury, and copper ions were inhibitory to various degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号