首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that the fission yeast nucleoporin Nup124p is required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr. Failure to import Tf1-Gag into the nucleus in a nup124 null mutant resulted in complete loss of Tf1 transposition. Similarly, nuclear import of HIV-1 Vpr was impaired in nup124 null mutant strains and cells became resistant to Vpr's cell-killing activity. On the basis of protein domain similarity, the human nucleoporin Nup153 was identified as a putative homolog of Nup124p. We demonstrate that in vitro-translated Nup124p and Nup153 coimmunoprecipitate Tf1-Gag or HIV-1 Vpr. Though full-length Nup153 was unable to complement the Tf1 transposition defect in a nup124 null mutant, we provide evidence that both nucleoporins share a unique N-terminal domain, Nup124p(AA264-454) and Nup153(AA448-634) that is absolutely essential for Tf1 transposition. Epigenetic overexpression of this domain in a wild-type (nup124(+)) background blocked Tf1 activity implying that sequences from Nup124p and the human Nup153 challenged the same pathway affecting Tf1 transposition. Our results establish a unique relationship between two analogous nucleoporins Nup124p and Nup153 wherein the function of a common domain in retrotransposition is conserved.  相似文献   

2.
Nup116p is a GLFG nucleoporin involved in RNA export processes. We show here that Nup116p physically interacts with the Nup82p-Nsp1p-Nup159p nuclear pore subcomplex, which plays a central role in nuclear mRNA export. For this association, a sequence within the C-terminal domain of Nup116p that includes the conserved nucleoporin RNA-binding motif was sufficient and necessary. Consistent with this biochemical interaction, protein A-Nup116p and the protein A-tagged Nup116p C-terminal domain, like the members of the Nup82p complex, localized to the cytoplasmic side of the nuclear pore complex, as revealed by immunogold labeling. Finally, synthetic lethal interactions were found between mutant alleles of NUP116 and all members of the Nup82p complex. Thus, Nup116p consists of three independent functional domains: 1) the C-terminal part interacts with the Nup82p complex; 2) the Gle2p-binding sequence interacts with Gle2p/Rae1p; and 3) the GLFG domain interacts with shuttling transport receptors such as karyopherin-beta family members.  相似文献   

3.
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.  相似文献   

4.
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.  相似文献   

5.
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.  相似文献   

6.
Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-beta1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. In ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.  相似文献   

7.
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.  相似文献   

8.
Nup153, one of the best characterized nuclear pore complex proteins (nucleoporins), plays a critical role in the import of proteins into the nucleus as well as in the export of RNAs and proteins from the nucleus. Initially an epitope of Nup153 was found to reside at the distal ring of the NPC, whereas more recently another epitope was localized to the nuclear ring moiety of the NPC. In an effort to more definitively determine the location of Nup153 within the 3-D architecture of the NPC we have generated domain-specific antibodies against distinct domains of Xenopus Nup153. With this approach we have found that the N-terminal domain is exposed at the nuclear ring of the NPC, whereas the zinc-finger domain of Nup153 is exposed at the distal ring of the NPC. In contrast, the C-terminal domain of Nup153 is not restricted to one particular subdomain of the NPC but rather appears to be highly flexible. Exogenous epitope-tagged hNup153 incorporated into Xenopus oocyte NPCs further underscored these findings. Our data illustrate that multiple domain-specific antibodies are essential to understanding the topology of a nucleoporin within the context of the NPC. Moreover, this approach has revealed new clues to the mechanisms by which Nup153 may contribute to nucleocytoplasmic transport.  相似文献   

9.
Nic96p has been isolated previously in a complex together with the nuclear pore proteins Nsp1p, Nup49p and a p54 polypeptide. In a genetic screen for Nsp1p-interacting components, we now find NIC96, as well as a novel gene NUP57 which encodes the p54 protein (called Nup57p). Nup57p which is essential for cell growth contains GLFG repeats in the N-terminal half and heptad repeats in the C-terminal half. The domain organization of Nic96p is more complex: N-terminally located heptad repeats mediate binding to a trimeric Nsp1p-Nup49p-Nup57p complex, but are not required for the formation of this core complex; single amino acid substitutions in the central domain yield thermosensitive mutants, which do not impair interaction with the Nsp1 complex; the C-terminal domain is neither essential nor required for binding to the nucleoporin complex, but strikingly mutations in this part cause synthetic lethality with nsp1 and nup57 mutant alleles. Since a strain in which the Nic96p heptad repeats were deleted shows, similar to nsp1 and nup49 mutants, cytoplasmic mislocalization of a nuclear reporter protein, we propose that the interaction of the heterotrimeric Nsp1p-Nup49p-Nup57p core complex with Nic96p is required for protein transport into the nucleus.  相似文献   

10.
Nup1p is a yeast nuclear pore complex protein (nucleoporin) required for nuclear protein import, mRNA export and maintenance of normal nuclear architecture. We have used a genetic approach to identify other proteins that interact functionally with Nup1p. Here we describe the isolation of seventeen mutants that confer a requirement for Nup1p in a background in which this protein is normally not essential. Some of the mutants require wild-type Nup1p, while others are viable in combination with specific nup1 alleles. Several of the mutants show nonallelic noncomplementation, suggesting that the products may be part of a hetero-oligomeric complex. One is allelic to srp1 which, although it was identified in an unrelated screen, was shown to encode a protein that is localized to the nuclear envelope (Yano, R., M. Oakes, M. Yamaghishi, J. A. Dodd, and M. Nomura. 1992. Mol. Cell. Biol. 12:5640- 5651). We have used immunoprecipitation and fusion protein precipitation to show that Srp1p forms distinct complexes with both Nup1p and the related nucleoporin Nup2p, indicating that Srp1p is a component of the nuclear pore complex. The distant sequence similarity between Srp1p and the beta-catenin/desmoplakin family, coupled with the altered structure of the nuclear envelope in nup1 mutants, suggests that Srp1p may function in attachment of the nuclear pore complex to an underlying nuclear skeleton.  相似文献   

11.
The FG nucleoporins are a conserved family of proteins, some of which bind to the nuclear localization sequence receptor, karyopherin. Distinct members of this family are found in each region of the nuclear pore complex (NPC), spanning from the cytoplasmically disposed filaments to the distal end of the nuclear basket. Movement of karyopherin from one FG nucleoporin to the next may be required for translocation of substrates across the NPC. So far, nothing is known about how the FG nucleoporins are localized within the NPC. To identify proteins that interact functionally with one member of this family, the Saccharomyces cerevisiae protein Nup1p, we previously identified 16 complementation groups containing mutants that are lethal in the absence of NUP1 These mutants were referred to as nle (Nup-lethal) mutants. Mutants in the nle3/nlel7 complementation group are lethal in combination with amino-terminal nup1 truncation mutants, which we have previously shown to be defective for localization to the NPC. Here we show that NLE3 (which is allelic to NUP170) encodes a protein with similarity to the mammalian nucleoporin Nup155. We show that Nle3p coprecipitates with glutathione S-transferase fusions containing the amino-terminal domain of Nup1p. Furthermore, a deletion of Nle3p leads to changes in the stoichiometry of several of the XFXFG nucleoporins, including the loss of Nup1p and Nup2p. These results suggest that Nle3p plays a role in localizing specific FG nucleoporins within the NPC. The broad spectrum of synthetic phenotypes observed with the nle3delta mutant provides support for this model. We also identify a redundant yeast homolog that can partially substitute for Nle3p and show that together these proteins are required for viability.  相似文献   

12.
The yeast nucleoporins Nsp1p, Nup49p, and Nup57p form a complex at the nuclear pores which is involved in nucleocytoplasmic transport. To investigate the molecular basis underlying complex formation, recombinant full-length Nup49p and Nup57p and the carboxyl-terminal domain of Nsp1p, which lacks the FXFG repeat domain, were expressed in Escherichia coli. When the three purified proteins were mixed together, they spontaneously associated to form a 150-kDa complex of 1:1:1 stoichiometry. In this trimeric complex, Nup57p fulfills the role of an organizing center, to which Nup49p and Nsp1p individually bind. For this interaction to occur, only two heptad repeat regions of the Nsp1p carboxyl-terminal domain are required, each region being about 50 amino acids in length. Finally, the reconstituted complex has the capability to bind to full-length Nic96p but not to mutant forms which also do not interact in vivo. When added to permeabilized yeast cells, the complex associates with the nuclear envelope and the nuclear pores. We conclude that Nsp1p, Nup49p, and Nup57p can reconstitute a complex in vitro which is competent for further assembly with other components of nuclear pores.  相似文献   

13.
The yeast nucleoporin Nup116p plays an important role in mRNA export and protein transport. We have determined the solution structure of the C-terminal 147 residues of this protein, the region responsible for targeting the protein to the nuclear pore complex (NPC). The structure of Nup116p-C consists of a large beta-sheet sandwiched against a smaller one, flanked on both sides by alpha-helical stretches, similar to the structure of its human homolog, NUP98. In unliganded form, Nup116p-C exhibits evidence of exchange among multiple conformations, raising the intriguing possibility that it may adopt distinct conformations when bound to different partners in the NPC. We have additionally shown that a peptide from the N terminus of the nucleoporin Nup145p-C binds Nup116p-C. This previously unknown interaction may explain the unusual asymmetric localization pattern of Nup116p in the NPC. Strikingly, the exchange phenomenon observed in the unbound state is greatly reduced in the corresponding spectra of peptide-bound Nup116p-C, suggesting that the binding interaction stabilizes the domain conformation. This study offers a high resolution view of a yeast nucleoporin structural domain and may provide insights into NPC architecture and function.  相似文献   

14.
Nup159p/Rat7p is an essential FG repeat–containing nucleoporin localized at the cytoplasmic face of the nuclear pore complex (NPC) and involved in poly(A)+ RNA export and NPC distribution. A detailed structural–functional analysis of this nucleoporin previously demonstrated that Nup159p is anchored within the NPC through its essential carboxyl-terminal domain. In this study, we demonstrate that Nup159p specifically interacts through this domain with both Nsp1p and Nup82p. Further analysis of the interactions within the Nup159p/Nsp1p/Nup82p subcomplex using the nup82Δ108 mutant strain revealed that a deletion within the carboxyl-terminal domain of Nup82p prevents its interaction with Nsp1p but does not affect the interaction between Nup159p and Nsp1p. Moreover, immunofluorescence analysis demonstrated that Nup159p is delocalized from the NPC in nup82Δ108 cells grown at 37°C, a temperature at which the Nup82Δ108p mutant protein becomes degraded. This suggests that Nup82p may act as a docking site for a core complex composed of the repeat-containing nucleoporins Nup159p and Nsp1p. In vivo transport assays further revealed that nup82Δ108 and nup159-1/rat7-1 mutant strains have little if any defect in nuclear protein import and protein export. Together our data suggest that the poly(A)+ RNA export defect previously observed in nup82 mutant cells might be due to the loss from the NPCs of the repeat-containing nucleoporin Nup159p.  相似文献   

15.
16.
17.
The Saccharomyces cerevisiae nuclear pore complex is a supramolecular assembly of 30 nucleoporins that cooperatively facilitate nucleocytoplasmic transport. Thirteen nucleoporins that contain FG peptide repeats (FG Nups) are proposed to function as stepping stones in karyopherin-mediated transport pathways. Here, protein interactions that occur at individual FG Nups were sampled using immobilized nucleoporins and yeast extracts. We find that many proteins bind to FG Nups in highly reproducible patterns. Among 135 proteins identified by mass spectrometry, most were karyopherins and nucleoporins. The PSFG nucleoporin Nup42p and the GLFG nucleoporins Nup49p, Nup57p, Nup100p, and Nup116p exhibited generic interactions with karyopherins; each bound 6--10 different karyopherin betas, including importins as well as exportins. Unexpectedly, the same Nups also captured the hexameric Nup84p complex and Nup2p. In contrast, the FXFG nucleoporins Nup1p, Nup2p, and Nup60p were more selective and captured mostly the Kap95p.Kap60p heterodimer. When the concentration of Gsp1p-GTP was elevated in the extracts to mimic the nucleoplasmic environment, the patterns of interacting proteins changed; exportins exhibited enhanced binding to FG Nups, and importins exhibited reduced binding. The results demonstrate a global role for Gsp1p-GTP on karyopherin-nucleoporin interactions and provide a rudimentary map of the routes that karyopherins take as they cross the nuclear pore complex.  相似文献   

18.
The large nucleoporin Nup358/RanBP2 forms eight filaments that project from the nuclear pore into the cytoplasm where they function as docking platforms for nucleocytoplasmic transport receptors. RNAi screens have implicated Nup358 in the HIV-1 life cycle. The 164 C-terminal amino acids of this 3,224 amino acid protein are a cyclophilin homology domain (Nup358Cyp), which has potential to bind the HIV-1 capsid and regulate viral progress to integration. Here we examined the virological role of Nup358 in conditional knockout mouse cells and in RNAi-depleted human CD4+ T cells. Cre-mediated gene knockout was toxic and diminished HIV-1 infectivity. However, cellular health and HIV-1 susceptibility were coordinately preserved if, prior to gene inactivation, a transposon was used to express all of Nup358 or only the N-terminal 1340 amino acids that contain three FG repeats and a Ran-binding domain. HIV-1, but not N74D capsid-mutant HIV-1, was markedly sensitive to TNPO3 depletion, but they infected 1–1340 segment-complemented Nup358 knockout cells equivalently. Human and mouse CypA both rescued HIV-1 in CypA gene −/− Jurkat cells and TRIM-Nup358Cyp fusions derived from each species were equally antiviral; each also inhibited both WT and N74D virus. In the human CD4+ T cell line SupT1, abrupt Nup358 depletion reduced viral replication but stable Nup358-depleted cells replicated HIV-1 normally. Thus, human CD4+ T cells can accommodate to loss of Nup358 and preserve HIV-1 susceptibility. Experiments with cylosporine, viruses with capsids that do not bind cyclophilins, and growth arrest did not uncover viral dependency on the C-terminal domains of Nup358. Our data reinforce the virological importance of TNPO3 and show that Nup358 supports nuclear transport functions important for cellular homeostasis and for HIV-1 nuclear import. However, the results do not suggest direct roles for the Nup358 cyclophilin or SUMO E3 ligase domains in engaging the HIV-1 capsid prior to nuclear translocation.  相似文献   

19.
《The Journal of cell biology》1996,133(6):1141-1152
The amino-terminal domain of Nic96p physically interacts with the Nsp1p complex which is involved in nucleocytoplasmic transport. Here we show that thermosensitive mutations mapping in the central domain of Nic96p inhibit nuclear pore formation at the nonpermissive temperature. Furthermore, the carboxyterminal domain of Nic96p functionally interacts with a novel nucleoporin Nup188p in an allele-specific fashion, and when ProtA-Nup188p was affinity purified, a fraction of Nic96p was found in physical interaction. Although NUP188 is not essential for viability, a null mutant exhibits striking abnormalities in nuclear envelope and nuclear pore morphology. We propose that Nic96p is a multivalent protein of the nuclear pore complex linked to several nuclear pore proteins via its different domains.  相似文献   

20.
About 30 different nucleoporins (Nups) constitute the nuclear pore complex. We have affinity-purified 28 of these nuclear pore proteins and identified new nucleoporin interactions by this analysis. We found that Nup157 and Nup170, two members of the large structural Nups, and the Gly-Leu-Phe-Gly nucleoporin Nup145N specifically co-purified with members of the Nup84 complex. In addition, Nup145N co-enriched during Nup157 purification. By in vitro reconstitution, we demonstrate that Nup157 and Nup145N form a nucleoporin subcomplex. Moreover, we show that Nup157 and Nup145N bind to the heptameric Nup84 complex. This assembly thus represents approximately one-third of all nucleoporins. To characterize Nup157 structurally, we purified and analyzed it by electron microscopy. Nup157 is a hollow sphere that resembles a clamp or a gripping hand. Thus, we could reconstitute an interaction between a large structural Nup, an FG repeat Nup, and a major structural module of the nuclear pore complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号