首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
T Nei 《Cryobiology》1976,13(3):278-286
The extent of hemolysis of human red blood cells suspended in different concentrations of glycerol and frozen at various cooling rates was investigated on the basis of morphological observation in the frozen state. Hemolysis of the cells in the absence of glycerol showed a V-shaped curve in terms of cooling rates. There was 70% hemolysis at an optimal cooling rate of approximately 103 °C/min and 100% hemolysis at all other rates tested. Morphologically, a lower than optimal cooling rate resulted in cellular shrinkage, while a higher than optimal rate resulted in the formation of intracellular ice.The cryoprotective effect of glycerol was dependent upon its concentration and on the cooling rate. Samples frozen at 103 and 104 °C/min showed freezing patterns which differed from cell to cell. The size of intraand extracellular ice particles became smaller, and there was less shrinkage or deformation of cells as the rate of cooling and concentration of glycerol were increased.There was some correlation between the morphology of frozen cells and the extent of post-thaw hemolysis, but the minimum size of intracellular ice crystals which might cause hemolysis could not be estimated. As a cryotechnique for electron microscopy, the addition of 30% glycerol and ultrarapid freezing at 105 °C/min are minimum requirements for the inhibition of ice formation and the prevention of the corresponding artifacts in erythrocytes.  相似文献   

2.
M Pasic  L De Sa Faria 《Cryobiology》1979,16(4):390-400
Isolated Aplysia depilans abdominal ganglia were exposed to 10 and 20% dimethylsulphoxide (Me2SO) or glycerol at room temperature. Results indicate that Me2SO induced an irreversible depression of extracellularly recorded ganglionic spontaneous spike generation while glycerol proved to be non-toxic. Intracellular recordings of individual nerve cell spontaneous activity during exposure to the cryoprotective agents were obtained in a few preliminary experiments. Both Me2SO and glycerol induced a decrement in the nerve cell membrane potential. The main difference between the action of the two cryoprotectants was in the rate and the amount of depolarization, both being higher in the case of Me2SO exposure.The Aplysia abdominal ganglia were frozen to ?20 °C and to ?196 °C. In all but one ganglia frozen to ?20 °C, including the preparations frozen in the absence of any cryoprotective agent, functional recovery was obtained after thawing. However, only the application of 20% glycerol improved the recovery of the preparations to a significant extent. In ganglia protected with 20% glycerol a full recovery of the action potential amplitude and frequency was obtained. In ganglia protected with 20% glycerol intracellular recordings of individual nerve cells demonstrated spontaneous spike activities before freezing and after thawing.No functional recovery was observed in ganglia frozen to ?196 °C in the absence of a cryoprotective agent. While in most preparations frozen with a cryoprotectant spontaneously generated spikes were recorded after thawing. However, the action potential frequency and amplitude were significantly depressed. It is concluded that further investigation is required to improve the freezing technique so that Aplysia ganglia may be preserved at low temperatures. It is suggested that intracellular exploration of the effects of cryoprotectants and freezing on identified nerve cell membrane may prove to be useful in future investigations.  相似文献   

3.
G Rapatz  B Luyet  A MacKenzie 《Cryobiology》1975,12(4):293-308
Human erythrocytes suspended in a sodium-free buffered salt solution containing glycerol in 1 m concentration (1 part of packed cells to 4 parts buffered salt solution) were frozen by slow, moderately rapid, or very rapid cooling to various subzero C temperatures. The frozen specimens, after a 5-min storage period at a given temperature, were thawed at low, moderately high, or very high rates. The hemolysis in the frozen and thawed samples was measured by a colorimetric determination of the hemoglobin released from the damaged cells. At ?10 °C, the highest freezing temperature employed, nearly 100% recovery of intact erythrocytes was obtained irrespective of the cooling and rewarming conditions. The extent of the hemolysis after exposure to lower freezing temperatures depended upon the cooling and rewarming conditions. Moderately rapid and very rapid freezing to, and thawing from temperatures below ?40 °C permitted significantly higher recoveries of intact cells than the other freezing/ thawing combinations. In the temperature range ?15 to ?30 °C the combination slow cooling and slow rewarming afforded maximum protection. Very rapid freezing/ slow thawing was the most damaging combination throughout the entire freezing range. The results were interpreted in part by a conventional two-factor analysis, lower cooling rates allowing concentrated salts to determine hemolysis, higher cooling rates destroying the cells by intracellular freezing. Apparent anomalies were explained in terms of a generalized “thermal/osmotic” shock according to which the erythrocytes were subject to greater hemolysis the higher the rates of cooling and/or warming.  相似文献   

4.
Abstract

FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above ?15°C, whereas membrane phase changes may continue until temperatures as low as ?30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to ?10°C was found to be greater than that below ?10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min-1, ~5% of the initial osmotically active water volume is trapped inside the cells at ?30°C.  相似文献   

5.
K Yamasato  D Okuno  T Otomo 《Cryobiology》1973,10(5):453-463
In order to get some basic information for the development of a long-term preservation method by freezing at moderately low temperatures, the viability of 259 strains belonging to 32 genera and 135 species was measured. Cells were suspended in 10% glycerol and stored at ?53 °C for 16 months. About 93%, 88%, and 74% of aerobic bacteria gave viable cell counts higher than 105/ml, 106/ml, and 107/ml, respectively. About 10% of gram-positives and 3% of gram-negatives gave viable cell counts lower than 105/ml. There seemed to be some species—and genus—specificity with respect to viability after frozen storage and liquid paraffin-seal storage. Strains of coryneform bacteria, genera of the family Enterobacteriaceae, and the genus Pseudomonas were generally resistant. Pseudomonas putrefaciens proved to be specifically sensitive. Lactic acid bacteria were subject to sublethal injury, requiring special recovery media. Psychrophilic bacteria were very susceptible to frozen storage. All the tested strains of acetic acid bacteria survived frozen storage well both in 10% glycerol and in 10% honey at ?28 °C for 4.5 years. Honey proved to be a better adjuvant for frozen storage than glycerol. It was suggested from the results that for many kinds of bacteria, long-term preservation by freezing at moderately low temperatures might be possible when appropriate procedures are applied.  相似文献   

6.
The damage caused to bull sperm by freezing and thawing them without cryoprotectants was assessed in both intact and membrane-extracted cells. Preparations of membrane-extracted cells were produced by treating the sperm with 0.1% Triton X-100 and motility was restored with exogenously applied ATP and Mg2+. Motile demembranated sperm showed no detectable reduction in motility after freezing and thawing. In contrast, when intact cells where subjected to freezing and thawing they lost all motility. These damaged cells were also restored to motility when exogenous ATP and Mg2+ were added to the sperm mixture. Apparently freezing and thawing sperm cells causes damage to the plasma membrane which permits ATP and Mg2+ to freely enter or leave the cells, but does not damage the components of the sperm cell which generate motility.The effects of storage temperature on frozen demembranated sperm were also explored. Sperm held at ?20 °C showed marked structural changes and progressively decreased motility after prolonged storage. When sperm were frozen at ?20 °C the mitochondrial structures were completely lost after 48 to 72 hr and ATP caused the disintegration of the flagellum rather than initiating motility. Sperm which were frozen at ?76 °C retained motility after short periods of storage, but showed a significant decline in motility when thawed after 8 days. Demembranated sperm which were kept frozen at ?196 °C showed no significant loss of motility when thawed after 1 year of storage.  相似文献   

7.
Intracellular freezing of glycerolized red cells.   总被引:1,自引:0,他引:1  
K R Diller 《Cryobiology》1979,16(2):125-131
The response of glycerolized human red blood cells to freezing has been evaluated in terms of the thermodynamic state of the frozen intracellular medium. The physiochemical conditions requisite for intracellular freezing, characterized by the cooling rate and the degree of extracellular supercooling, are altered appreciably by the prefreezing addition of glycerol to the cells.Fresh human erythrocytes were suspended in an isotonic glycerol solution yielding a final cryophylactic concentration of either 1.5 or 3.0 m. Subsequently the cell suspension was frozen on a special low temperature stage, mounted on a light microscope, at controlled constant cooling rates with varying degrees of extracellular supercooling (ΔTsc). The formation of a pure intracellular ice phase was detected by direct observation of the cells.The addition of glycerol produced several significant variations in the freezing characteristics of the blood. As in unmodified cells, the incidence of intracellular freezing increased with the magnitudes of both the cooling rate and the extracellular supercooling. However, the glycerolized cells exhibited a much greater tendency to supercool prior to the initial nucleation of ice. Values of ΔTsc > ?20 °C were readily obtained. Also, the transition from 0 to 100% occurrence of intracellular ice covered a cooling rate spectrum in excess of 300 to 600 °K/min, as compared with 10 °C/min for unmodified cells. Thus, the incidence of intracellular ice formation was significantly increased in glycerolized cells.  相似文献   

8.
J.K. Sherman  K.C. Liu 《Cryobiology》1982,19(5):503-510
Tails of mouse epididymides were treated as follows: control, unfrozen with and without cryoprotective agents (CPA); frozen (to below ?80 °C), slowly (8 °C/min), and rapidly (18 °C/sec), with and without CPA. Intracellular and/or extracellular location of CPA, at least glycerol, was influenced, respectively, by high (22 °C) or low (0 °C) exposure temperature. Standard procedures in electron microscopy were employed and the frozen state preserved by freeze-substitution. Motility before freezing and after thawing was the criterion of cryosurvival.Results showed no evidence of deleterious ultrastructural effects of freezing at rates compared, or of benefits of CPA, regardless of their cellular location. Differences were noted, however, in the appearance of spermatozoa in the frozen state, as a function of the rate of freezing but not as a function of the presence, absence, or location of either glycerol of DMSO. Rapidly frozen cells showed intracellular ice formation in the acrosome, neck, midpiece, and tail regions; there was no intranuclear ice, and extracellular ice artifacts were small. Slowly frozen cells showed large extracellular ice artifacts with evidence of shrinkage distortion due to the dehydration induced by extracellular ice. No spermatozoa survived any of the freezing treatments, showing the lethal effect of both extracellular ice during slow freezing and of intracellular and/or extracellular ice during rapid freezing.  相似文献   

9.
Lipid bilayer vesicles (liposomes) with and without glycoprotein incorporated into the membranes were tested for stability during freezing and thawing, in presence and absence of the cryoprotective agents (CPA) glycerol and dimethyl sulfoxide. Changes in turbidity and loss of energy transfer between fluorescent probes present in the bilayers were used to estimate membrane integrity.Freezing caused a 30 to 40% destruction of protein-free liposomes, in absence of CPA. CPA at 10 to 20% concentration prevented such losses, but at higher concentrations destabilized liposomes even without freezing. Protein-containing liposomes suffered no loss on freezing in absence or presence of CPA at moderate concentrations.Lowering of the storage temperature of frozen samples within the range of ?5 to ?27 °C increased the freeze damage. Slower rates of cooling and warming caused a slightly greater loss.The results are interpreted in terms of the liquid mosaic model for lipid bilayers. CPA at higher concentrations destabilize bilayers by dissolving phospholipids. At moderate concentrations, however, they prevent the damaging effect of dehydration of the lipid on freezing. Proteins appear to stabilize bilayers by providing increased hydration at the membrane surface, and by additional hydrophobic binding in the membrane interior.  相似文献   

10.
Abstract Cells fixed during freezing or plasmolysis were used to study membrane alterations in hardened and non-hardened Brassica napus suspension-cultured cells and rye leaf mesophyll cells. The plasmalemma in non-hardened rye mesophyll cells formed multilamellar vesicles during lethal freezing at high subzero temperatures (–5°C). These vesicles became highly condensed at lower subzero temperatures (–10°C). Conversely, cold-hardened rye mesophyll cells did not undergo membrane alterations at these temperatures. The results from plasmolysis of B. napus and rye mesophyll cells hardened by ABA at 25 °C and low temperature (2°C), respectively, verify the cell response to lethal freezing. Again there was a continuum of responses with 1 kmol m?3 balanced salt causing multilamellar protrusions. Appression of the plasmalemma against the tonoplast to form multilamellar vesicles and the invagination of these vesicles into the tonoplast were also observed in rye cells undergoing lethal plasmolysis. Increasing the plasmolysing solution to 3 kmol m?3 occasionally caused the formation of multilamellar vesicles on the cell surface of hardened rye mesophyll cells.  相似文献   

11.
Previous studies have demonstrated that glycerol does not have to permeate bovine red cells to protect them against subsequent freezing and thawing. The present study is concerned with the relation between solute permeation and freezing injury of human red cells. Cells were held in 2 m glycerol for 30 sec to 10 min at 0 °C and then frozen to ?196 °C at 60 °C/min. Cells cooled at this rate have a very low probability of undergoing intracellular freezing. Percent survivals (≡percent unhemolyzed) increased by 21% (from 66 to 80%) over the first 3-min period. Extrapolation to zero time (and zero glycerol permeation) yields a survival of 57%. Between 30 sec and 3 min the calculated osmolal ratio of intracellular glycerol to other solutes increased 240% (from 2.5 to 5.7). The human red cell is impermeable to sucrose at 0 °C. Cells suspended in 1.40 m sucrose (equiosmolal to 2.0 m glycerol) for 0.5 to 10 min prior to freezing yielded as high survivals after thawing as did cells in glycerol.These data indicate that prior permeation of additive is not a prerequisite for the survival of red cells subjected to subsequent freezing and thawing. Although sucrose and glycerol protect equally well to this point, differences appear when attempts are made to remove the additive. Over 90% of the cells survive the removal of glycerol. Only some 30% survive the removal of sucrose. Cells frozen in an equisomolal solution of sodium chloride do not even survive the initial freezing and thawing.The findings indicate that slow freezing injury cannot be accounted for in terms of the attainment of a critical minimum volume, nor can it be considered to be equivalent to posthypertonic hemolysis.  相似文献   

12.
A study was conducted to determine the effects of freezing on the major membrane proteins of isolated human erythrocyte membranes. Membranes in low or normal ionic strength medium were frozen at slow or fast freezing rates. The membrane protein composition and elution of proteins from the membranes were studied utilizing polyacrylamide-gel electrophoresis in a sodium dodecyl sulfate or an acetic acid-urea-phenol solvent system. Neither a change in the composition of the membrane proteins nor any elution of membrane protein during freezing and thawing was observed. The data indicate that any human erythrocyte membrane damage during freezing and thawing was not related to a change in major membrane protein composition. Human red cell membranes were stable at ?80 or ?196 °C in the absence of a cryoprotective agent.  相似文献   

13.
Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Ex tended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25°C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40°C, 0.4°C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P < 0.05). Fluidity of head membranes from all sources decreased at 25°C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5°C reduced the rate of fluidity change for plasma membranes from the spernvrich fraction, while heating over 30°C caused a signifi cantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25°C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25°C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.  相似文献   

14.
Summary The pathophysiology of endothelial cells is important to a variety of vascular conditions including coagulation and hemostasis resulting from clinical frostbite. Use of an in vitro model system demonstrated that when bovine endothelial cells were frozen at 1°C or 20°C/min and thawed immediately (20°C/min), a variety of ultrastructural alterations occurred. Membraneous structures were most extensively damaged, with mitochondria the most sensitive organelle. Low amplitude mitochondrial swelling, first evident at 0°C, progressed to high amplitude swelling by −10°C (frozen). In addition, the rough endoplasmic reticulum was dilated and formed large vesicles with a homogeneous matrix. Nuclear changes first occurred at −15°C. These included separation and distortion of the nuclear membrane, changes in chromatin distribution, and disruption of the nucleolus. Scanning electron microscopy revealed perforated plasma membranes in some cells at −10°C (frozen) and in most cells by −20°C. Cultures frozen at 20°C/min revealed mostly the same ultrastructural damage noted at 1°C/min except a higher percentage of cells exhibited alterations. Data from the recovery index and lactic dehydrogenase (LDH) release correlated well with observed ultrastructural changes. Early swelling of mitochondria and dilation of rough endoplasmic reticulum was not lethal in the absence of freezing. Increased swelling in cytoplasmic organelles coupled with nuclear alterations at −15°C resulted in a decreased survival rate and release of significant quantities of LDH by −20°C. No unique morphological changes were temperature specific, but the total number of cells that displayed alterations increased as temperature decreased. The views, opinions or findings, or both, contained in this report are those of the authros and should not be construed as indicative of an official Department of the Army position, policy, or decision unless so designated by other official documentation.  相似文献   

15.
Islets of Langerhans, prepared by a new mechanical process and avoiding enzymatic digestion were frozen to ?196 °C. Two rates of freezing were compared, instantaneous directly into liquid nitrogen and slow freezing at 1 °C min?1. Post-thaw survival was greater after slow freezing.Three concentrations of dimethyl sulfoxide (DMSO) were compared. The 10% vv concentration was found to give greater success than 20 or 30%. Contaminating exocrine tissue was found not to survive the freezing process.  相似文献   

16.
J K Sherman  K C Liu 《Cryobiology》1973,10(2):104-118
One phase of a study on cryosurvival and cryoprotection of mammalian cells, in terms of ultrastructural alteration of rough endoplasmic reticulum (RER) within rat pancreatic acinar cells, is presented. Small (2–3 mm) squares of tissue, 0.7–0.9 mm in thickness, were compared as unfrozen controls, with (w) and without (wo) glycerol pretreatment (15% vv in mammalian Ringer's solution) at 0 °C and 22 °C (to regulate glycerol permeability); as well as parallel frozen-thawed samples, after combinations of slow (3.8 °C/min) freezing (SF) and rapid (38 °C/sec) freezing (RF) with either slow (1.5 °C/min) thawing (ST) or rapid (8 °C/sec) thawing (RT). Regimens compared were SFRT, SFST, RFRT, and RFST, all w and wo glycerol pretreatment at 0 °C and 22 °C. Tissue from each treatment was prepared for electron microscopic observations. The results on rates of freezing and thawing and relative cryoprotection of intracellular and extracellular glycerol under conditions described are intended to serve as a correlative basis for subsequent parallel studies on function (protein synthesis) and ultrastructure of the frozen state. They now indicate the following: (1) Cryoinjury of RER, which occurred during all treatments compared, was manifested in irregularity, dilatation, vesiculation, and altered matrix density of cisternae, and ribosomal derangement or disjunction. Least injury was shown by some disorientation and dilatation with increasing degrees of damage involving accentuation of these and other alterations. Such ultrastructural alterations to RER are not unique to cryoinjury, since they have been induced by treatments and agents other than freeze-thawing in experimental pathology. (2) Cryoinjury is unique, however, in that it can be regulated to demonstrate a spectrum of degrees of injury to cells and their organelles, immediately after cryoexposure. Controlled cryoinjury is suggested as a research tool for studies on injury, in general, on an ultrastructural-functional level. (3) Glycerol is injurious or toxic during pretreatment. Toxicity, which resembles cryoinjury, is greater during 22 ° C (intracellular) than 0 °C (extracellular) glycerol pretreatment, especially with respect to dilatation of cisternae. (4) Extra-cellular glycerol is cryoprotective during both slow and rapid freezing followed by either slow or rapid thawing, while little or no cryoprotection is afforded when glycerol is located simultaneously in the intracellular and extracellular location. (5) Rate of freezing is more important than rate of thawing as a factor in cryosurvival. Rapid freezing is more injurious than slow freezing, in the absence of glycerol or in the presence of extracellular glycerol, with slight or no differences seen as a function of thawing rate. Neither rate of freezing nor rate of thawing is of serious consequence when glycerol is intracellular. (6) Rate of thawing has importance after slow freezing, when slow thawing is more injurious than rapid, but not after rapid freezing, either in the presence or absence of extracellular glyeerol.  相似文献   

17.
Norway spruce (Picea abies Karst.) seeds were frozen and stored for 15 months at + 3, ? 25, ? 75 or ? 196°C. After storage, seeds were germinated for 9?14 days to determine viability and plasma membrane protein composition, H+-ATPase activity and fluidity. The results indicate no significant differences in viability of seed 14 days after germination. Biochemical analyses revealed increased plasma membrane fluidity in 9-day-old Norway spruce seedlings raised from seeds pretreated at ? 75 °C. and changes in the temperature profile of membrane fluidity in seedlings after pre-treatment of seeds at ? 25 °C. On the other hand, the same treatments did not result in changes in plasma membrane protein content, protein composition or ATPase activity. There was also no difference in plasma membrane H+-ATPase activity assayed in the presence of different ATP hydrolysis inhibitors. Based on the presented results, and other experimental data, we suggest that during early seedling growth, adaptation of seeds to ? 25 and ? 75°C freezing and/or storage temperature results in stability of the plasma membrane protein function and composition and increased fluidity or changes in the temperature-dependent fluidity profile of these membranes.  相似文献   

18.
Brian Harvey 《Cryobiology》1983,20(4):440-447
Single cells from the developing embryo of the zebra fish survive freezing when protected with 1 M DMSO and cooled to ?196 °C in two steps. Cell survival drops from 85 to 26% when clumps of 5–10 cells are similarly frozen, and to 2% when isolated blastoderms are treated in the same way. This drastic decrease in survival is interpreted as an example of the “scale-up problem,” in which diffusional barriers prevent cryoprotectant equilibration and osmotic dehydration in large cell assemblanges.Isolated blastoderms develop considerably in culture, and retain some of this ability following cooling to ?25 °C after protection with DMSO or glycerol.Intact embryos protected with high concentrations of glycerol (2.8 M) tolerate slow cooling to ?196 °C surprisingly well, with most of the embryonic cells morphologically intact and actively extruding lobopodia. Glycerol could, however, only be removed from cells by disrupting the embryo so that diffusional barriers were removed. DMSO (2.8 M) was ineffective in preserving embryos or cells cooled to ?196 °C.  相似文献   

19.
To improve the transformation efficiency of Zygosaccharomyces rouxii by electroporation, glycerol was added to the electroporation buffer and the cells were frozen at ?80 °C. These alterations drastically increased transformation efficiency, and we found that competent cells can be preserved at ?80 °C without decreasing their transformation efficiency for at least 30 d.  相似文献   

20.
The freeze tolerant wood frog Rana sylvatica was studied to determine the impact of the freezing and thawing of this frog on the activity of γ-glutamyltranspeptidase in the liver. On exposure to ?2·5°C, for 1, 12 and 24 h, frogs were found to be cool, covered with ice crystals and frozen, respectively. Thawing for 24 h at 4°C recovered the frogs completely. A 45 per cent decrease in the liver weight: body weight ratio was notable after 1 h at ?2·5°C, suggestive of an early hepatic capacitance response. A glycemic response to freezing was observed: blood glucose levels exhibited a 55 per cent decrease after 1 h at ?2·5°C on cooling; a 10·5-fold increase after 12 h at ?2·5°C on the initiation of freezing; and a 22-fold increase after 24 h at ?2·5°C in the fully frozen state. Blood glucose levels remained elevated four-fold in the thawed state. Plasma insulin levels were increased twofold in the frozen state and 1·8-fold in the thawed state, while plasma ketone levels were increased 1·8-fold in the frozen state and 1·5-fold in the thawed state. Plasma total T3 levels were decreased by 22 per cent in the frozen state and normalized on thawing. In homogenates and plasma membranes isolated from the livers of Rana sylvatica, the activity of γ-glutamyltranspeptidase was found to be elevated at all stages of the freeze–thaw process. After 1, 12 and 24 h at ?2·5°C, activities were increased 2·5-, 2·3-, 2·4-fold respectively in the homogenates and 2·5-, 2·2-, 2·4-fold respectively in the plasma membranes. After thawing, activities were still increased 1·9-fold in both homogenates and plasma membranes. In homogenates prepared from the kidneys of Rana sylvatica, the activity of γ-glutamyltranspeptidase was increased 1·4-fold after 1 h at ?2·5°C after which it returned to normal. The role of thyroid hormone in producing the increase in γ-glutamyltranspeptidase in the liver of Rana sylvatica in response to freezing is discussed as is the significance of the enzyme increase in terms of hepatic cytoprotection and freeze tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号