首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the course of studies on anaerobic citrate metabolism in Klebsiella pneumoniae, the DNA region upstream of the gene for the sodium-dependent citrate carrier (dtS) was investigated. Nucleotide sequence analysis revealed a cluster of five new genes that were oriented inversely to citS and probaby form an operon. The genes were named citCDEFG. Based on known protein sequence data, the gene products derived from citD, citE and citF could be identified as the λ-, β-, and α-subunits of citrate lyase, respectively. This enzyme catalyses the cleavage of citrate to oxaloacetate and acetate. The gene product derived from citC (calculated Mr 36476) exhibited no obvious similarity to other proteins. In the presence of acetate and ATP, cell extracts from a citC-expressing Escherichia coli strain were able to reactivate purified citrate lyase from K. pneumoniae that had been inactivated by chemical deacetylation of the prosthetic group. This represents 5-phosphoribosyi-dephospho-acetyl-coenzyme A which is covalently bound to serine-14 of the acyl carrier protein (λ-subunit). CitC was thus identified as acetate:SH-citrate lyase ligase. The function of the gene product derived from citG (Mr 32 645) has not yet been identified. Expression of the CitCDEFG gene cluster in E. coli led to the formation of citrate lyase which was active only in the presence of acetyl-coenzyme A, a compound known to substitute for the prosthetic group. These and other data strongly indicated that the enzyme synthesized in E. coli lacked its prosthetic group. Thus, additional genes besides citCDEFG appear to be required for the formation of holo-citrate lyase.  相似文献   

2.
Quintuple mutants of Escherichia coli deficient in the C(4)-dicarboxylate carriers of aerobic and anaerobic metabolism (DctA, DcuA, DcuB, DcuC, and the DcuC homolog DcuD, or the citrate/succinate antiporter CitT) showed only poor growth on succinate (or other C(4)-dicarboxylates) under oxic conditions. At acidic pH (pH 6) the mutants regained aerobic growth on succinate, but not on fumarate. Succinate uptake by the mutants could not be saturated at physiological succinate concentrations (< or =5 mM), in contrast to the wild-type, which had a K(m) for succinate of 50 microM and a V(max) of 35 U/g dry weight at pH 6. At high substrate concentrations, the mutants showed transport activities (32 U/g dry weight) comparable to that of the wild-type. In the wild-type using DctA as the carrier, succinate uptake had a pH optimum of 6, whereas succinate uptake in the mutants was maximal at pH 5. In the mutants succinate uptake was inhibited competitively by monocarboxylic acids. Diffusion of succinate or fumarate across phospholipid membranes (liposomes) was orders of magnitude slower than the transport in the wild-type or the mutants. The data suggest that mutants deficient in DctA, DcuA, DcuB, DcuC, DcuD (or CitT) contain a carrier, possibly a monocarboxylate carrier, which is able to transport succinate, but not fumarate, at acidic pH, when succinate is present as a monoanion. Succinate uptake by this carrier was inhibited by addition of an uncoupler. Growth by fumarate respiration (requiring fumarate/succinate antiport) was also lost in the quintuple mutants, and growth was not restored at pH 6. In contrast, the efflux of succinate produced during glucose fermentation was not affected in the mutants, demonstrating that, for succinate efflux, a carrier different from, or in addition to, the known Dcu and CitT carriers is used.  相似文献   

3.
4.
1. The enzymes citrate lyase and isocitrate lyase catalyse similar reactions in the cleavage of citrate to acetate plus oxaloacetate and of isocitrate to succinate plus glyoxylate, respectively. 2. Nevertheless, the mechanism of action of each enzyme appears to be different from each other. Citrate lyase is an acyl carrier protein-containing enzyme complex whereas isocitrate lyase is not. The active form of citrate lyase is an acetyl-S-enzyme but that of isocitrate lyase is not a corresponding succinyl-S-enzyme. 3. In contrast to citrate lyase, the isocitrate enzyme is not inhibited by hydroxylamine nor does it acquire label if treated with appropriately labelled radioactive substrate. 4. Isotopic exchange experiments performed in H18-2O with isocitrate as a substrate produced no labelling in the product succinate. This was shown by mass-spectrometric analysis. 5. The conclusion drawn from these results is that no activation of succinate takes place on the enzyme through transient formation of succinic anhydride or a covalently-linked succinyl-enzyme, derived from this anhydride.  相似文献   

5.
Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry into the tricarboxylic acid (TCA) cycle via citrate synthase (coded by the gltA gene). Since the pathway to any biochemical derived from acetyl-CoA must ultimately compete with citrate synthase, a reduction in citrate synthase activity should facilitate the increased formation of products derived from acetyl-CoA. To test this hypothesis, we integrated into E. coli C ΔpoxB twenty-eight citrate synthase variants having specific point mutations that were anticipated to reduce citrate synthase activity. These variants were assessed in shake flasks for growth and the production of acetate, a model product derived from acetyl-CoA. Mutations in citrate synthase at residues W260, A267 and V361 resulted in the greatest acetate yields (approximately 0.24 g/g glucose) compared to the native citrate synthase (0.05 g/g). These variants were further examined in controlled batch and continuous processes. The results provide important insights on improving the production of compounds derived from acetyl-CoA.  相似文献   

6.
A bacterium (strain A1) isolated from a ditch synthesized three types of intracellular alginate lyases: A1-I (molecular weight [M.W.] 60,000), A1-II-2 (M.W. 25,000) and A1-III (M.W. 38,000). The nucleotide sequence of the gene for A1-I lyase, which has been cloned in Escherichia coli DH1 was determined. The open reading frame of the gene encoded 622 amino acids with a calculated M.W. of 69,153. The N-terminal amino acid sequence of A1-I lyase purified from strain A1 or E. coli DH1 cells transformed with the A1-I lyase gene was consistent with the deduced sequence from 55His to 74Ala, indicating that the A1-I lyase was synthesized as a precursor with a M.W. of 69,153 and then processed to a mature form with a M.W. of 63,681. The N-terminal sequence of the first twenty amino acids of A1-III lyase was found to match that of A1-I lyase. The N-terminal sequence of the first twenty amino acids of A1-II-2 lyase was consistent with the deduced amino acid sequence from 414Ala to 433Val in the nucleotide sequence of the A1-I lyase gene. These results indicated that the A1-I lyase was further processed to generate A1-II-2 and A1-III lyase species.  相似文献   

7.
The effect of the introduction of a synthetic bypass, providing 2-ketoglutarate to succinate conversion via the intermediate succinate semialdehyde formation, on aerobic biosynthesis of succinic acid from glucose through the oxidative branch of the tricarboxylic acid cycle in recombinant Escherichia coli strains has been studied. The strain lacking the key pathways of acetic, lactic acid and ethanol formation from pyruvate and acetyl-CoA and possessing modified system of glucose transport and phosphorylation was used as a chassis for the construction of the target recombinants. The operation of the glyoxylate shunt in the strains was precluded resulting from the deletion of the aceA, aceB, and glcB genes encoding isocitrate lyase and malate synthases A and G. The constitutive activity of isocitrate dehydrogenase was ensured due to deletion of isocitrate dehydrogenase kinase/phosphatase gene, aceK. Upon further inactivation of succinate dehydrogenase, the corresponding strain synthesized succinic acid from glucose with a molar yield of 24.9%. Activation of the synthetic bypass by the induced expression of Mycobacterium tuberculosis 2-ketoglutarate decarboxylase gene notably increased the yield of succinic acid. Functional activity of the synthetic bypass in the strain with the inactivated glyoxylate shunt and opened tricarboxylic acid cycle led to 2.7-fold increase in succinate yield from glucose. As the result, the substrate to the target product conversion reached 67.2%. The respective approach could be useful for the construction of the efficient microbial succinic acid producers.  相似文献   

8.
Salmonella typhimurium but not citrate-utilizing Escherichia coli carrying the Cit plasmid showed positive chemotaxis to tricarboxylic acids, indicating that the Cit plasmid encodes a transport system but not a chemoreceptor for citrate.  相似文献   

9.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

10.
Succinate fermentation was investigated in Escherichia coli strains overexpressing Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PEPCK). In E. coli K-12, PEPCK overexpression had no effect on succinate fermentation. In contrast, in the phosphoenolpyruvate carboxylase mutant E. coli strain K-12 ppc::kan, PEPCK overexpression increased succinate production 6.5-fold.  相似文献   

11.
Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.  相似文献   

12.
Bacteria contain secondary carriers for the uptake, exchange or efflux of C4-dicarboxylates. In aerobic bacteria, dicarboxylate transport (Dct)A carriers catalyze uptake of C4-dicarboxylates in a H(+)- or Na(+)-C4-dicarboxylate symport. Carriers of the dicarboxylate uptake (Dcu)AB family are used for electroneutral fumarate:succinate antiport which is required in anaerobic fumarate respiration. The DcuC carriers apparently function in succinate efflux during fermentation. The tripartite ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake carriers requiring a periplasmic solute binding protein. For heterologous exchange of C4-dicarboxylates with other carboxylic acids (such as citrate:succinate by CitT) further types of carriers are used. The different families of C4-dicarboxylate carriers, the biochemistry of the transport reactions, and their metabolic functions are described. Many bacteria contain membraneous C4-dicarboxylate sensors which control the synthesis of enzymes for C4-dicarboxylate metabolism. The C4-dicarboxylate sensors DcuS, DctB, and DctS are histidine protein kinases and belong to different families of two-component systems. They contain periplasmic domains presumably involved in C4-dicarboxylate sensing. In DcuS the periplasmic domain seems to be essential for direct interaction with the C4-dicarboxylates. In signal perception by DctB, interaction of the C4-dicarboxylates with DctB and the DctA carrier plays an important role.  相似文献   

13.
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B.  相似文献   

14.
α-Ketoglutarate was obtained in a very small amount by the oxidative fermentation of acetate with either a growing culture or the washed cells of Escherichia coli. This microorganism was also observed to accumulate a considerable amount of α-ketoglutarate as the oxidation-product of C4-dicarboxylic acids such as succinate, fumarate, malate and oxalacetate. The addition of acetate to the reaction mixtures containing either C3- or C4-acids brought about an increase in the yield of α-ketoglutarate. The bacteria of coli-aerogenes revealed an ability of oxidizing tricarboxylic acids under suitable conditions, but there was no noticeable production of α-ketoglutarate. The formation of glyoxylate was observed to occur during the degradation of citrate by the bacteria of coli-aerogenes. Finally, a cyclic mechanism of aerobic carbon-metabolism in the bacteria was propounded and discussed.  相似文献   

15.
A citrate lyase (EC 4.1.3.6) was purified 25-fold from Leuconostoc mesenteroides and was shown to contain three subunits. The first 42 amino acids of the β subunit were identified, as well as an internal peptide sequence spanning some 20 amino acids into the α subunit. Using degenerated primers from these sequences, we amplified a 1.2-kb DNA fragment by PCR from Leuconostoc mesenteroides subsp. cremoris. This fragment was used as a probe for screening a Leuconostoc genomic bank to identify the structural genes. The 2.7-kb gene cluster encoding citrate lyase of L. mesenteroides is organized in three open reading frames, citD, citE, and citF, encoding, respectively, the three citrate lyase subunits γ (acyl carrier protein [ACP]), β (citryl-S-ACP lyase; EC 4.1.3.34), and α (citrate:acetyl-ACP transferase; EC 2.8.3.10). The gene (citC) encoding the citrate lyase ligase (EC 6.2.1.22) was localized in the region upstream of citD. Protein comparisons show similarities with the citrate lyase ligase and citrate lyase of Klebsiella pneumoniae and Haemophilus influenzae. Downstream of the citrate lyase cluster, a 1.4-kb open reading frame encoding a 52-kDa protein was found. The deduced protein is similar to CitG of the other bacteria, and its function remains unknown. Expression of the citCDEFG gene cluster in Escherichia coli led to the detection of a citrate lyase activity only in the presence of acetyl coenzyme A, which is a structural analog of the prosthetic group. This shows that the acetyl-ACP group of the citrate lyase form in E. coli is not complete or not linked to the protein.Lactic acid bacteria of the genus Leuconostoc play important roles in the dairy industry because of their ability to produce carbon dioxide and C4 aroma compounds through lactose heterofermentation and citrate utilization. The carbon dioxide produced is responsible for eye formation in certain types of cheese. Citrate utilization by these bacteria leads to the production of diacetyl, which is considered a main flavor compound of a range of fermented dairy products such as cultured butter, buttermilk, and cottage cheese.The citrate utilization by lactic acid bacteria requires specifically three enzymes involved in the conversion of citrate to pyruvate: a citrate permease, a citrate lyase, and an oxaloacetate decarboxylase. The energetic role of citrate metabolism in Leuconostoc mesenteroides has been recently described (24, 25). The citrate permease catalyzes an electrogenic exchange of divalent anionic citrate and monovalent lactate, resulting in the generation of a membrane potential (Fig. (Fig.1,1, reaction 1) (24, 25). The intracellular citrate is cleaved by a citrate lyase (EC 4.1.3.6), yielding acetate and oxaloacetate (Fig. (Fig.1,1, reactions 2 and 3). The oxaloacetate is decarboxylated into carbon dioxide and pyruvate in a reaction catalyzed by the enzyme oxaloacetate decarboxylase (Fig. (Fig.1,1, reaction 4). Open in a separate windowFIG. 1Citrate fermentation pathway in L. mesenteroides and role of the different subunits in the reaction catalyzed by citrate lyase (EC 4.1.3.6). The proteins involved are citrate permease (1), citrate lyase α subunit citrate:acetyl-ACP transferase (EC 2.8.3.10) (2), citrate lyase β subunit citryl–S-ACP lyase (EC 4.1.3.34) (3) oxaloacetate decarboxylase (4), acetate:SH-CL ligase (EC 6.2.1.22) (5), and lactate dehydrogenase (6). ACP, γ subunit of ACP; R, prosthetic group. Acetic anhydride is used for chemical specific acetylation of the prosthetic group. Acetic anhydride is an analog of the mixed anhydride of citric and acetic acids which corresponds probably to an intermediate analog in the acyl-exchange reaction (7a, 14a).Understanding of the molecular genetics of these lactic acid bacteria is not far advanced, and the genes encoding the enzymes citrate lyase and oxaloacetate decarboxylase are unknown.On the basis of previous studies (22, 33), the citrate lyase of Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc can be considered a functional complex (Mr, 585,000) composed of three proteins: α, β, and γ subunits in a stoichiometric relationship of 6:6:6. The structure and the mechanism of action are similar to those of the citrate lyase of Klebsiella pneumoniae, which has been extensively studied (1, 15, 16, 34, 36). The citrate lyase is active only if the thioester residue of the prosthetic group linked to its acyl carrier protein (ACP) (γ subunit) is acetylated. This activation is catalyzed by an acetate:SH-citrate lyase ligase (CL ligase) (EC 6.2.1.22), which converts HS-ACP with ATP and acetate into the acetyl-S-ACP (Fig. (Fig.1,1, reaction 5) (32). The α subunit replaces the acyl group with a citryl group to form the citryl-S-ACP (Fig. (Fig.1,1, reaction 2) (16). At last, the β subunit cleaves citryl-S-ACP into oxaloacetate and regenerates the acyl-S-ACP (Fig. (Fig.1,1, reaction 3) (16).Different mechanisms of regulation of citrate lyase have been reported, such as configurational changes, reversible covalent modification by acetylation-deacetylation, and phosphorylation-dephosphorylation (1, 2). In microorganisms like Klebsiella, in which the reactions of the tricarboxylic acid cycle are operative and therefore contain citrate synthase, a strict regulation of citrate lyase activity is necessary to avoid a futile cycle between citrate fermentation and the l-glutamate biosynthetic pathway. After citrate depletion from the growth medium or upon transfer from an anaerobic citrate medium to an aerobic glucose medium, the synthesis of l-glutamate from oxaloacetate and acetyl coenzyme A (CoA) via citrate can be ensured only if the citrate fermentation pathway is turned off. The intracellular l-glutamate concentration controls these pathways by modulating the activity of the citrate lyase complex (1, 2).An induction of citrate lyase activity has been observed in Leuconostoc but never in all Lactococcus strains tested (21, 26). In L. mesenteroides, the citrate lyase activity is induced by citrate and rapidly repressed after the citrate consumption in the medium. However, the regulation mechanisms remain unknown. In this paper, we report the purification of L. mesenteroides citrate lyase and an approach based on reverse genetics that yielded the full-length sequence of CL ligase and citrate lyase genes encoding the α, β, and γ subunits. The citrate lyase and CL ligase genes were sequenced and expressed in Escherichia coli.  相似文献   

16.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

17.
Previous studies have shown that high levels of complex nutrients (Luria broth or 5% corn steep liquor) were necessary for rapid ethanol production by the ethanologenic strain Escherichia coli KO11. Although this strain is prototrophic, cell density and ethanol production remained low in mineral salts media (10% xylose) unless complex nutrients were added. The basis for this nutrient requirement was identified as a regulatory problem created by metabolic engineering of an ethanol pathway. Cells must partition pyruvate between competing needs for biosynthesis and regeneration of NAD+. Expression of low-Km Zymomonas mobilis pdc (pyruvate decarboxylase) in KO11 reduced the flow of pyruvate carbon into native fermentation pathways as desired, but it also restricted the flow of carbon skeletons into the 2-ketoglutarate arm of the tricarboxylic acid pathway (biosynthesis). In mineral salts medium containing 1% corn steep liquor and 10% xylose, the detrimental effect of metabolic engineering was substantially reduced by addition of pyruvate. A similar benefit was also observed when acetaldehyde, 2-ketoglutarate, or glutamate was added. In E. coli, citrate synthase links the cellular abundance of NADH to the supply of 2-ketoglutarate for glutamate biosynthesis. This enzyme is allosterically regulated and inhibited by high NADH concentrations. In addition, citrate synthase catalyzes the first committed step in 2-ketoglutarate synthesis. Oxidation of NADH by added acetaldehyde (or pyruvate) would be expected to increase the activity of E. coli citrate synthase and direct more carbon into 2-ketoglutarate, and this may explain the stimulation of growth. This hypothesis was tested, in part, by cloning the Bacillus subtilis citZ gene encoding an NADH-insensitive citrate synthase. Expression of recombinant citZ in KO11 was accompanied by increases in cell growth and ethanol production, which substantially reduced the need for complex nutrients.  相似文献   

18.
19.
In Escherichia coli K12, succinate was not the dominant fermentation product from xylose. To reduce by-product formation and increase succinate accumulation, pyruvate formate lyase and lactate dehydrogenase, encoded by pflB and ldhA genes, were inactivated. However, these mutations eliminated cell growth and xylose utilization. During anaerobic growth of bacteria, organic intermediates, such as pyruvate, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate level phosphorylation. In E. coli K12, conversion of xylose to pyruvate only yielded 0.67 net ATP per xylose during anaerobic fermentation. However, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose, which could meet the ATP needed for xylose metabolism. A pflB deletion strain cannot convert pyruvate to acetyl coenzyme A, the precursor for acetate and ethanol production, and could not produce the additional ATP. Thus, the double mutations eliminated cell growth and xylose utilization. To supply the sufficient ATPs, overexpression of ATP-forming phosphoenolpyruvate-carboxykinase from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinate production. In addition, fermentation of corn stalk hydrolysate containing a high percentage of xylose and glucose produced a final succinate concentration of 11.13 g l−1 with a yield of 1.02 g g−1 total sugars during anaerobic fermentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号