首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The accident at the Chernobyl Atomic Energy Station resulted in radiation contamination of large tracts of land and particularly the reactor building itself. Sustained exposure of microfungi to radiation appears to have resulted in formerly unknown adaptive features, such as directed growth of fungi to sources of ionizing radiation. We evaluate here spore germination and subsequent emergent hyphal growth of microfungi in the presence of pure gamma or mixed beta and gamma radiation of fungi isolated from a range of long term background radiation levels. Conidiospore suspensions were exposed to collimated beams of radiation and percent spore germination and length of emergent hyphae were measured. All fungal species isolated from background radiation showed inhibition or no response in germination when irradiated. Isolates from sites with elevated radiation showed a stimulation in spore germination (69% mixed radiation and 46% for gamma irradiation). Most isolates from low background radiation sites showed a significant reduced or no response to exposure to either source of radiation, whereas the stimulatory effect of experimental exposure to radiation appeared to increase in magnitude as prior exposure to radiation increased. We propose that the enhanced spore germination and hyphal growth seen in the exposure trials is induced by prior long term exposure to radiation and these factors could be important in controlling the decomposition of radionuclide-bearing resources in the environment.  相似文献   

2.
The paper summarized issues, current status and the recent topics in biological research of space radiation. Researches to estimate a risk associated with space radiation exposure during a long-term manned space flight, such as in the International Space Station, is emphasized because of the large uncertainty of biological effects and a complexity of the radiation environment in space. The Issues addressed are; 1) biological effects and end points in low dose radiation, 2) biological effects under low dose rate and long-term radiation exposure, 3) modification of biological responses to radiation under space environments, 4) various aspects of biological end points vs. cellular and molecular mechanisms, 5) estimation of human risk associated with radiation exposure in space flight, 6) regulations for radiation exposure limits for space workers. The paper also summarized and introduced recent progress in space related radiation researches with various biological systems.  相似文献   

3.
There is a concern over the potential use of radioactive isotopes as a weapon of terror. The detonation of a radiation dispersal device, the so-called “dirty bomb” can lead to public panic. In order to estimate risks associated with radiation exposure, it is important to understand the biological effects of radiation exposure. Based on this knowledge, biomarkers to monitor potentially exposed populations after a radiological accident can be developed and would be extremely valuable for emergency response. While the traditional radiation exposure biomarkers based on cytogenetic assays serve as standard, the development of rapid and noninvasive tests for radiation exposure is needed. The genomics based knowledge is providing new avenues for investigation. The examination of gene expression after ionizing radiation exposure could serve as a potential molecular marker for biodosimetry. Microarray based studies are identifying new radiation responsive genes that could potentially be used as biomarkers of human exposure to radiation after an accident.  相似文献   

4.
目的:探讨二甲双胍联合放射线照射对鼻咽癌细胞CNE-1增殖的影响。方法:分别给予鼻咽癌细胞CNE-1二甲双胍(5m M)、2Gy放射线照射、二甲双胍(5 m M)联合2Gy放射线照射处理后,采用MTT实验、克隆形成实验检测和比较其细胞增殖抑制率和克隆形成抑制率。结果:MTT实验结果显示:与二甲双胍组或2Gy放射线照射组相比,二甲双胍联合放射线照射组细胞增殖抑制率显著升高,差异具有统计学意义(P0.05);克隆形成实验结果显示,与二甲双胍组或2Gy放射线照射组相比,二甲双胍联合放射线照射组细胞克隆形成抑制率显著升高,差异具有统计学意义(P0.05)。结论:二甲双胍联合放射线照射能够有效的抑制鼻咽癌细胞CNE-1的增殖。  相似文献   

5.
BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with 0.6042 mREM per procedure. In Group III the scatter radiation exposure was 1152 mREM with 1.3930 mREM per procedure. CONCLUSION: Results of this study showed that scatter radiation exposure to both the upper and lower parts of the physician's body is present. Protection was offered by traditional measures to the upper body only.  相似文献   

6.
A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose.  相似文献   

7.
Rapid radiation injury early triage for large-scale people after radiation exposure is vital for limited medical resources allocation and early treatment of a large number of wounded after a nuclear accident. Owing to the high-throughput analysis and minimally invasive of collection sample, radiation metabolomics has been recently applied to radiation damage researches. Here, exploration the feasibility of estimating the acute radiation injury early triage by means of plasma amino acid target analysis was attempted using high performance liquid chromatography–electrospray tandem mass spectrometry (HPLC–ESI–MS/MS) technique. The nonlinear kernel partial least squares (KPLS) model was used to classify the radiation damage levels. The classification accuracy of without radiation exposure was 92.3 % at 5 h after exposure. At 24 h after exposure, the triage accuracies were all above 83 % in the different doses of irradiated groups, the correct classification rates of moderate and severe radiation injury were 91.7 and 92.3 % respectively. At 72 h after exposure, the classification accuracies of all levels of radiation injury were more than 90 %, the correct classification rates of moderate and severe groups were up to 100 %. This approach is useful for early predicting different levels of radiation exposure and for developing metabolomics strategies for radiation biodosimetry in humans, but need more data to consummate.  相似文献   

8.
Alpha-lipoic acid (LA) protected plasmid pBR 322 DNA, under in vitro conditions from gamma radiation induced strand breaks as evidenced by the prevention of the loss of supercoiled covalently closed circular form upon irradiation. It also protected the membrane lipids of liver homogenates from the oxidative damages. Whole body exposure of mice to gamma-radiation resulted in damage to cellular DNA in various tissues and administration of LA prior to the radiation exposure prevented the radiation induced DNA damage as assessed by alkaline comet assay. Administration of LA to mice prior to the radiation exposure also prevented induction of chromosomal damages in bone marrow cells and formation of micronuclei in blood reticulocytes. Thus taken together, LA a normal cellular constituent could be used as a radioprotector against whole body radiation exposure scenarios.  相似文献   

9.
G C Teskey  M Kavaliers 《Life sciences》1984,35(15):1547-1552
The effects of exposure to ionizing radiation on the nociceptive thresholds of CF-1 mice were examined. Significant increases in thermal response latencies, indicative of analgesia were observed after exposure to either high or low doses of radiation. However, the onset of analgesia occurred significantly more rapidly after treatment with the high doses. Administration of the opiate antagonist, naloxone, blocked and reversed the analgesic effects of both the high and low dose of radiation. These findings support the hypothesis that exposure to ionizing radiation results in opioid-mediated analgesia.  相似文献   

10.
A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction.  相似文献   

11.
The role of biological membranes as a target in biological radiation damage remains unclear. The present study investigates how the biochemical and biophysical properties of a simple biological model, i.e. human erythrocyte membranes, are altered after exposure to relatively low doses of (60)Co gamma rays. Lipid peroxidation increased in the hours after radiation exposure, based on measurements of MDA and on the lipid peroxidation index after parinaric acid incorporation. Protein carbonyl content also increased rapidly after radiation exposure. An imbalance between the radiation-mediated oxidative damages and the antioxidant capacity of the erythrocytes was observed in the hours after radiation exposure. Antioxidant enzyme activities, mainly catalase and glutathione peroxidase, were found to decrease after irradiation. The development of a radiation-induced oxidative stress probably explains the reorganization of the fatty acid pattern 72 h after radiation exposure. The phosphatidylethanolamine (PE) fatty acids of the (n-3) and (n-6) series decreased, while the PE saturated fatty acid content increased. All these modifications may be involved in the variation of the biophysical properties of the membranes that we noted after radiation exposure. Specifically, we observed that the lipid compartment of the membrane became more fluid while the lipid-protein membrane interface became more rigid. Taken together, these findings reinforce our understanding that the cell membrane is a significant biological target of radiation. Thus the role of the biological membrane in the expression and course of cell damage after radiation exposure must be considered.  相似文献   

12.
While there is a considerable number of studies on the relationship between the risk of disease or death and direct exposure from the atomic bomb in Hiroshima, the risk for indirect exposure caused by residual radioactivity has not yet been fully evaluated. One of the reasons is that risk assessments have utilized estimated radiation doses, but that it is difficult to estimate indirect exposure. To evaluate risks for other causes, including indirect radiation exposure, as well as direct exposure, a statistical method is described here that evaluates risk with respect to individual location at the time of atomic bomb exposure instead of radiation dose. In addition, it is also considered to split the risks into separate risks due to direct exposure and other causes using radiation dose. The proposed method is applied to a cohort study of Hiroshima atomic bomb survivors. The resultant contour map suggests that the region west to the hypocenter has a higher risk compared to other areas. This in turn suggests that there exists an impact on risk that cannot be explained by direct exposure.  相似文献   

13.
The health-related hazards resulting from long-term exposure to radiation remain unknown. Thus, an appropriate molecular marker is needed to clarify these effects. Cyclin D1 regulates the cell cycle transition from the G1 phase to the S phase. Cyclin D1 is degraded as a G1/S checkpoint after 10 Gy of single acute radiation exposure, whereas conversely, cyclin D1 is stabilized when human tumor cells are exposed to fractionated radiation (FR) with 0.5 Gy of x-rays for 31 d. In this article, we review new findings regarding cyclin D1 overexpression in response to long-term exposure to FR. Cyclin D1 overexpression is associated with induction of genomic instability in irradiated cells. Therefore, repression of cyclin D1 expression is likely to cancel the harmful effects of long-term exposure to FR. Thus cyclin D1 may be a marker of long-term exposure to radiation and is a putative molecular radioprotection target for radiation safety.  相似文献   

14.
In view of modern knowledge and concepts about components, function and mechanisms of response of cell molecular structures to damaging effects, response which is generating specialized modules of reactions, it is shown that main components of the mechanism of maintenance of genome constancy at ionizing radiation exposure are checkpoints of cell cycle, DNA repair and apoptosis. They operate under the control of a genetic system at participation of Tp53 gene, corresponding protein and of regulatory networks formed by cascades of mitogen-activated protein kinases (MAPK). At ionizing radiation exposure the MAPK special modules participate in formation of radiation effect: ERK 1/2 (extracellular signal-regulated kinase 1 and 2), JNK/SAPK (c-Jun N-terminal kinase/stress activated protein kinase) and p38 MAPK. Executing physiological functions of maintenance of normal life activity of cells, they do not lose this capacity after exposure to ionizing radiation, participating in formation of radiation effect in a wide range of doses, and are inactivated only by exposure to very high doses. It is concluded that in light of the modern data the main problem is not a problem of mechanisms of biological effect of ionizing radiation but a problem of biological mechanisms of radiation exposure.  相似文献   

15.
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic "hit-effect" relationships and towards complex ongoing "cellular responses". These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as bystander effects, genomic instability, and adaptive responses. All three have been observed at very low doses, and at time points far removed from the initial radiation exposure, and are extremely relevant for linear extrapolation to low doses; the adaptive response is particularly relevant when exposure is spread over a period of time. These are precisely the circumstances that are most relevant to understanding cancer risk associated with environmental and occupational radiation exposures. This review will provide a synthesis of the known, and proposed, interrelationships amongst low-dose cellular responses to radiation. It also will examine the potential importance of non-targeted cellular responses to ionizing radiation in setting acceptable exposure limits especially to low-LET radiations.  相似文献   

16.
The Sun is the most abundant source of optical radiation for the child eye. New hand-held visible lasers are a threat to the child eye. Some scientific data suggest that near infrared radiation may cause cumulative damage in the ocular lens. The child eye usually is exposed to ambient solar radiation, gazing at the horizon. Ambient Sun ultraviolet radiation (UVR) exposure to the child is complex due to atmospheric scattering and strong dependence on background reflection. Solar exposure causes biological damage, only by photochemical mechanisms. UVR exposure to a child eye is mainly a threat to the anterior segment of the eye, but also age dependently to the retina. Above threshold exposure to UVR, for short delay onset of damage, causes a toxic reaction on the surface of the eye, snow blindness, and cataract. Sub-threshold daily exposure to UVR over decades is associated with several ocular surface pathologies and eye lid cancer. Visible radiation is a threat to the retina. A single above threshold exposure, for short delay onset of damage to the retina causes immediate photochemical Type II retinal damage, Sun blindness. A single exposure of the retina to a very high intensity laser beam may cause thermal or thermo-mechanical damage in the retina. In environments with high irradiance of optical radiation, the child eye should be protected. Legislation and public information is required for avoidance of damage from high intensity laser systems. More research is urgently needed to exclude the potential hazard of near infrared radiation.  相似文献   

17.
Cui W  Ma J  Wang Y  Biswal S 《PloS one》2011,6(8):e22988
The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures.  相似文献   

18.
A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.  相似文献   

19.
The survival of B6D2F1 female mice exposed to lethal doses of fission neutron radiation is increased when trehalose dimycolate (TDM) preparations are given either 1 h after exposure or 1 day before exposure to radiation. TDM in an emulsion of squalene, Tween 80, and saline was the most effective formulation for increasing the 30-day survival of mice when given 1 day before (90%) or 1 h after (88%) exposure to radiation. An aqueous suspension of a synthetic analog of TDM was less effective at increasing 30-day survival (60%) when given 1 day prior to radiation exposure and not effective when given 1 h after radiation. Mice receiving a sublethal dose (3.5 Gy) of fission neutron radiation and either the TDM emulsion or synthetic TDM 1 h after irradiation were substantially more resistant to challenge with 10, 100, 1000, or 5000 times the LD50/30 dose of Klebsiella pneumoniae than untreated mice.  相似文献   

20.
Morgan WF 《Radiation research》2003,159(5):581-596
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号