首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet surface glycoproteins IIb-IIIa are considered to function as the binding site for fibrinogen. Fibrinogen binding is essential for platelet aggregation and several amines have been shown to inhibit this binding. The present study compares the binding properties of 125I-fibrinogen and [3H]lysine with platelets activated by the Ca2+ ionophore A23187. Many lines of similarities in the binding properties are apparent; however, several differences were also found. The similarities are listed below and the differences are pointed out in parentheses. (a) Marked enhancement by platelet activation; (b) deficiency of binding by thrombasthenic platelets lacking the glycoproteins IIb-IIIa; (c) saturability (fibrinogen binding approaches saturation at more than 12 μM, within 10 min; lysine binding at more than 100 mM within 1 min); (d) Ca2+-dependence (at 1 mM Ca2+ lysine binding is minute and fibrinogen binding is half-saturated); (e) reversibility; the binding achieved within 10 min is exchangeable; dissociation depends upon time and external ligand concentration; (f) inhibition by the oligoamines His-Lys and Lys4; (g) inhibition by serum from a thrombasthenic patient who developed anti-glycoproteins IIb-IIIa antibodies; (h) specificity; alanine neither binds to activated platelets nor inhibits fibrinogen binding; it thus appears that the lysine which associates with activated platelets is mostly bound onto the surface of the cells rather than being incorporated; Moreover, the major site of lysine binding seems to be the complexed glycoproteins IIb-IIIa.  相似文献   

2.
Platelet glycoproteins IIb and IIIa function as a fibrinogen receptor on the activated platelet. We have shown that these glycoproteins can be incorporated onto the surface of phosphatidylcholine vesicles with retention of fibrinogen and antibody binding properties and can permit Ca2+ transit across the phospholipid bilayer. In the current study we demonstrate that this apparent Ca2+ channel function is specifically inhibited by the synthetic analogue of the fibrinogen gamma COOH-terminal peptide, His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (His-12-Val), but not by the adhesive protein sequence Arg-Gly-Asp-Ser (RGDS). Prior incubation of IIb-IIIa liposomes with RGDS prevented Ca2+ transit inhibition by 25 microM His-12-Val, analogous to RGDS inhibition of His-12-Val binding to platelets. His-12-Val inhibited a minor component of transmembrane Ca2+ influx into ADP and thrombin-activated human platelets but had no effect on steady-state platelet 45Ca flux. These data indicate that ligand binding may exert a regulatory influence on transmembrane Ca2+ influx into activated platelets. The difference in inhibitory potency of the peptides studied may be related to differences in conformational changes in the glycoprotein IIb-IIIa complex induced by His-12-Val and RGDS, steric considerations, or differences in interactions with glycoprotein IIb Ca2+ binding domains.  相似文献   

3.
The platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a member of the integrin receptor family that recognizes adhesive proteins containing the Arg-Gly-Asp (RGD) sequence. In the present study the binding characteristics of the synthetic hexapeptide Tyr-Asn-Arg-Gly-Asp-Ser (YNRGDS, a sequence present in the fibrinogen alpha-chain at position 570-575) to purified GP IIb-IIIa were determined by equilibrium dialysis. The binding of 125I-YNRGDS to GP IIb-IIIa was specific, saturable, and reversible. The apparent dissociation constant was 1.0 +/- 0.2 microM, and the maximal binding capacity was 0.92 +/- 0.02 mol of 125I-YNRGDS/mol of GP IIb-IIIa, indicating that GP IIb-IIIa contains a single binding site for RGD peptides. The binding of 125I-YNRGDS to purified GP IIb-IIIa showed many of the characteristics of fibrinogen binding to activated platelets: the binding was inhibited by fibrinogen, by the monoclonal antibody A2A9, and by the dodecapeptide from the C terminus of the fibrinogen gamma-chain. In addition, the binding of 125I-YNRGDS to GP IIb-IIIa was divalent cation-dependent. Our data suggest that two divalent cation binding sites must be occupied for YNRGDS to bind: one site is specific for calcium and is saturated at 1 microM free Ca2+, whereas the other site is less specific and reaches saturation at millimolar concentrations of either Ca2+ or Mg2+. The results of the present study support the hypothesis that the RGD domains within the adhesive proteins are responsible for their binding to GP IIb-IIIa.  相似文献   

4.
C S Chen  S H Chou  P Thiagarajan 《Biochemistry》1988,27(16):6121-6126
The binding of fibrinogen to activated platelets leads to platelet aggregation. Fibrinogen has multiple binding sites to platelet membrane glycoprotein IIb-IIIa complex. At least two well-defined sequences in fibrinogen, Arg-Gly-Asp sequence of A alpha 95-97 and A alpha 572-574 and gamma 400-411, have been shown to interact with glycoprotein IIb-IIIa. A possible binding site on the amino-terminal end of fibrinogen to platelet glycoprotein IIb-IIIa has also been reported. In this paper the effect of synthetic peptides derived from the amino-terminal end of the B beta chain on platelet aggregation and fibrinogen binding has been examined. B beta 15-42 peptide inhibits platelet aggregation and 125I-fibrinogen binding to activated platelets in a dose-dependent manner. Since B beta 15-42 contains a previously identified fibrinogen binding site, B beta 15-18, exposed by thrombin cleavage of native fibrinogen, we also examined the effect of B beta 15-18, B beta 19-42, and B beta 1-14 (fibrinopeptide B) on platelet aggregation and fibrinogen binding. Synthetic fibrinopeptide B and B beta 15-18 had no effect on platelet aggregation and fibrinogen binding while B beta 19-42 retained the inhibitory effect. When fibrinogen is chromatographed on a column of agarose-bound B beta 15-42, a cation-dependent retention of fibrinogen on the peptide column was observed, and fibrinogen was eluted from the column by B beta 15-42 but not by B beta 1-14. Under the same conditions, platelet glycoprotein IIb-IIIa was not retained in the column. Thus, the observed inhibitory effect is due to its interaction with fibrinogen rather than to platelet glycoprotein IIb-IIIa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Platelet membrane glycoproteins IIb and IIIa form a Ca2+-dependent heterodimer complex that contains binding sites for fibrinogen, von Willebrand factor, and fibronectin following platelet stimulation. We have studied the effect of Ca2+ on the stability of the IIb-IIIa complex using a IIb-IIIa complex-specific monoclonal antibody A2A9 to detect the presence of the complexes. Soluble IIb and IIIa interacted with A2A9-Sepharose only in the presence of Ca2+ with 50% IIb-IIIa binding requiring 0.4 microM Ca2+. In contrast, at 25 degrees C 125I-A2A9 binding to intact unstimulated platelets suspended in buffers containing EDTA or ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid was independent of the presence of Ca2+. However, the effect of Ca2+ chelators on 125I-A2A9 binding varied with temperature. At 37 degrees C, 125I-A2A9 binding to intact platelets became Ca2+-dependent with 50% binding requiring 0.4 microM Ca2+. This effect of temperature was not due to a change in platelet membrane fluidity because enrichment or depletion of platelet membrane cholesterol did not influence antibody binding. But, 125I-A2A9 binding to intact platelets at 25 degrees C did become Ca2+-dependent when the pH was increased above 7.4. Thus, at 1 nM Ca2+ and 25 degrees C, 50% antibody binding occurred at pH 9.0. Our studies demonstrate that Ca2+-dependent IIb-IIIa complexes are present on unstimulated platelets and that the Ca2+ binding sites responsible for the stability of these complexes are located on the external platelet surface. Our experiments also suggest that changes in platelet cytosolic Ca2+ do not regulate the formation of IIb-IIIa complexes.  相似文献   

6.
Several lines of evidence indicate that the platelet membrane glycoprotein IIb-IIIa complex (GP IIb-IIIa) is necessary for the expression of platelet fibrinogen receptors. The purpose of the present study was to determine whether purified GP IIb-IIIa retains the properties of the fibrinogen receptor on platelets. Glycoprotein IIb-IIIa was incorporated by detergent dialysis into phospholipid vesicles composed of 30% phosphatidylcholine and 70% phosphatidylserine. 125I-Fibrinogen binding to the GP IIb-IIIa vesicles, as measured by filtration, had many of the characteristics of 125I-fibrinogen binding to whole platelets or isolated platelet plasma membranes: binding was specific, saturable, reversible, time dependent, and Ca2+ dependent. The apparent dissociation constant for 125I-fibrinogen binding to GP IIb-IIIa vesicles was 15 nM, and the maximal binding capacity was 0.1 mol of 125I-fibrinogen/mol of GP IIb-IIIa. 125I-Fibrinogen binding was inhibited by amino sugars, the GP IIb and/or IIIa monoclonal antibody 10E5, and the decapeptide from the carboxyl terminus of the fibrinogen gamma chain. Furthermore, little or no 125I-fibrinogen bound to phospholipid vesicles lacking protein or containing proteins other than GP IIb-IIIa (i.e. bacteriorhodopsin, apolipoprotein A-I, or glycophorin). Also, other 125I-labeled plasma proteins (transferrin, orosomucoid) did not bind to the GP IIb-IIIa vesicles. These results demonstrate that GP IIb-IIIa contains the platelet fibrinogen receptor.  相似文献   

7.
The molecular basis of platelet-fibrin binding has been elucidated by studying interactions between platelets and protofibrils, soluble two-stranded polymers of fibrin which are intermediates on the fibrin assembly pathway. The fibrinogen degradation product, fragment D, has been used to block fibrin assembly, thus enabling the preparation of stable solutions of short protofibrils, composed of fewer than twenty fibrin monomer molecules per polymer. Fibrin protofibrils bound to ADP-activated platelets in a time- and concentration-dependent process which was effectively blocked by excess unlabelled fibrinogen, i.e., the binding was specific and appeared to involve a common receptor. ADP-stimulated cells bound approx. 3 micrograms of fibrin protofibrils/10(8) platelets, compared to 4 micrograms of fibrinogen/10(8) cells, following a 30-min incubation period at room temperature. Binding of both ligands was inhibited by high concentrations of fragment D, further indicating a similar mechanism. The kinetic data obtained were well described by an apparent first-order mechanism in which the rate constant for fibrin protofibril binding was found to be 5-fold slower than that measured for fibrinogen. Two monoclonal antibodies, each directed against the platelet glycoprotein IIb-IIIa complex, inhibited the binding of fibrin protofibrils and fibrinogen in a similar, concentration-dependent manner, providing strong evidence for a common receptor. Binding of GPRP-fibrin (soluble fibrin oligomers formed in the presence of 1 mM Gly-Pro-Arg-Pro) to ADP-stimulated platelets was also inhibited by a monoclonal antibody directed against the GPIIb-IIIa complex. Neither fibrin protofibrils nor fibrinogen bound to Glanzmann's thrombasthenic platelets, which lack normal quantities of functional glycoprotein IIb-IIIa complex, further supporting the hypothesis that fibrinogen and fibrin bind to a common platelet receptor present on the glycoprotein IIb-IIIa complex.  相似文献   

8.
Characterization of the platelet agglutinating activity of thrombospondin   总被引:6,自引:0,他引:6  
Thrombospondin (TSP) is a glycoprotein secreted from the alpha-granules of platelets upon activation. In the presence of divalent cations, the secreted protein binds to the surface of the activated platelets and is responsible for the endogenous lectin-like activity associated with activated platelets. Platelets fixed with formaldehyde following activation by thrombin are agglutinated by exogenously added TSP. Fixed, nonactivated platelets are not agglutinated. The platelet agglutinating activity of TSP is optimally expressed in the presence of 2 mM each of Mg2+ and Ca2+. Reduction of the disulfide bonds within the TSP molecule inhibits its platelet agglutinating activity. TSP bound to the surface of fixed, activated platelets can be eluted by the addition of disodium ethylenediaminetetraacetate. This approach was exploited to identify the region of the TSP molecule containing the platelet binding site. The binding site resides within a thermolytic fragment of TSP with Mr 140 000 but is not present in the Mr 120 000 fragment derived from the polypeptide of Mr 140 000. Since both the Mr 140 000 and 120 000 fragments contain fibrinogen binding sites, this finding suggests that the binding of TSP to the platelet surface requires interaction with other platelet surface components in addition to fibrinogen. The observation that fibrinogen only partially inhibits the TSP-mediated agglutination of fixed, activated platelets is consistent with this interpretation.  相似文献   

9.
The ability of different ligands of glycoprotein (GP) IIb-IIIa (alphaIIb/beta3-integrin) to support platelet aggregation stimulated by activating anti-GP IIb-IIIa monoclonal antibody (monoAB) CRC54 has been investigated. Antibody CRC54 stimulated aggregation of washed platelets not only in the presence of fibrinogen, the main GP IIb-IIIa ligand, but also in the presence of von Willebrand factor (vWF). Unlike these ligands, fibronectin failed to support CRC54-induced aggregation. Fibrinogen and vWF dependent platelet aggregation was completely suppressed by GP IIb-IIIa antagonists--preparations Monafram (F(ab')2 fragments of monoAB that blocked GP IIb-IIIa receptor activity) and aggrastat (RGD-like peptidomimetic). However, aggregation stimulated in the presence of vWF was also completely inhibited by monoAB AK2 directed against GP Ib and capable of blocking its binding with vWF. CRC54-induced aggregation of platelets from patient with GP Ib deficiency in the presence of vWF was significantly lower than aggregation of platelets from normal donors and was not inhibited by anti-GP Ib antibody but still blocked by GP IIb-IIIa antagonist Monafram. Monafram also suppressed CRC54-stimulated platelet adhesion to plastic-adsorbed fibrinogen, vWF, and fibronectin. Unlike CRC54-induced platelet aggregation supported by fluid phase vWF, CRC54-induced adhesion to adsorbed vWF was not affected by anti-GP Ib antibody. Aggregation induced by CRC54 in the presence of fibrinogen and vWF was only partially suppressed by prostaglandin E1, an inhibitor of platelet activation, and was associated with serotonin release from platelet granules only when Ca2+ concentration was decreased from 1 mM (physiological level) to 0.1 mM. The data indicate that vWF supports CRC54-induced platelet aggregation via interaction with two receptors--GP IIb-IIIa and GP Ib. Aggregation induced by CRC54 in the presence of vWF or fibrinogen is only partially dependent on platelet activation and is accompanied with granule secretion only at low Ca2+ concentrations.  相似文献   

10.
Fibronectin, von Willebrand factor, and fibrinogen each bind to the glycoprotein IIb-IIIa complex on activated platelets via an arg-gly-asp-ser (RGDS) sequence present within the adhesive proteins. Both the IIb and IIIa polypeptides of the IIb-IIIa complex on thrombin activated platelets are specifically and extensively labeled by a radiolabeled, photoactivatable arylazide derivative of the RGDS sequence when the labeling is performed in the presence of concentrations of Ca++ or Mg++ approaching 0.5 mM. In contrast, labeling of unactivated platelets, ADP activated platelets, or thrombin activated platelets in the presence of low concentrations of divalent cations resulted in restriction of labeling to the IIb polypeptide of the complex.  相似文献   

11.
Soluble fibrinogen binding to the glycoprotein IIb-IIIa complex (integrin alpha IIb beta 3) requires platelet activation. The intracellular mediator(s) that convert glycoprotein IIb-IIIa into an active fibrinogen receptor have not been identified. Because the lipid composition of the platelet plasma membrane undergoes changes during activation, we investigated the effects of lipids on the fibrinogen binding properties of purified glycoprotein IIb-IIIa. Anion exchange chromatography of lipids extracted from platelets exposed to thrombin or other platelet agonists resolved an activity that increased fibrinogen binding to glycoprotein IIb-IIIa. A monoester phosphate was important for activity, and phosphatidic acid coeluted with the peak of activity. Purified phosphatidic acid dose-dependently promoted a specific interaction between glycoprotein IIb-IIIa and fibrinogen which possessed many but not all of the properties of fibrinogen binding to activated platelets. Phosphatidic acid appeared to increase the proportion of fibrinogen binding-competent glycoprotein IIb-IIIa complexes without altering their affinity for fibrinogen. The effects of phosphatidic acid were a result of specific structural properties of the lipid and were not mimicked by other phospholipids. Lysophosphatidic acid, however, was a potent inducer of fibrinogen binding to glycoprotein IIb-IIIa. These results demonstrate that specific lipids can affect fibrinogen binding to purified glycoprotein IIb-IIIa and suggest that the lipid environment has the potential to influence fibrinogen binding to its receptor.  相似文献   

12.
Fibronectin binds to specific receptors on the surface of washed, thrombin-activated platelets. Evidence suggests that these receptors are closely associated with the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). To determine whether GP IIb-IIIa itself can form a platelet receptor for fibronectin, we used a filtration assay to examine the interaction of purified fibronectin with purified GP IIb-IIIa incorporated into phospholipid vesicles. 125I-Fibronectin binding to the phospholipid vesicles required the presence of incorporated GP IIb-IIIa and was specific, time-dependent, reversible, saturable, and divalent cation-dependent (Mg2+ greater than Ca2+). The dissociation constant for 125I-fibronectin binding to the GP IIb-IIIa-containing vesicles in the presence of 2 mM MgCl2 was 87 nM. Proteins or peptides that inhibit 125I-fibronectin binding to whole platelets also inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. Thus, specific 125I-fibronectin binding was inhibited by excess unlabeled fibrinogen or fibronectin, the anti-GP IIb-IIIa monoclonal antibody 10E5, the decapeptide from the carboxyl terminus of the fibrinogen gamma-chain, and the tetrapeptide Arg-Gly-Asp-Ser from the cell-binding domain of fibronectin. In contrast to results obtained using whole platelets, unlabeled fibronectin inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. These results show that 125I-fibronectin binds directly to purified GP IIb-IIIa with most of the previously reported properties of 125I-fibronectin binding to washed, thrombin-stimulated platelets. Thus, GP IIb-IIIa has the potential to function as a platelet receptor for fibronectin as well as for fibrinogen.  相似文献   

13.
Human platelets maintain a low cytosolic free Ca2+ concentration in part by controlling plasma membrane Ca2+ transport. The present studies examine the role in this process of two well-characterized membrane proteins: glycoproteins IIb and IIIa. These glycoproteins form a Ca2+-dependent complex which serves as both the platelet fibrinogen receptor and the principle site for high affinity Ca2+ binding on the platelet surface. The kinetics of plasma membrane Ca2+ exchange were compared in normal platelets and in thrombasthenic platelets, which lack the IIb X IIIa complex. Under steady-state conditions, the maximum rate of plasma membrane Ca2+ exchange in the thrombasthenic platelets was half the rate observed in normal platelets. The size of the cytosolic exchangeable Ca2+ pool and the cytosolic free Ca2+ concentration, however, were normal. A quantitatively similar decrease in plasma membrane Ca2+ exchange was seen in normal platelets after incubation with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) at 37 degrees C, conditions that dissociate the IIb X IIIa complex. This decrease in the Ca2+ exchange rate in normal platelets could be prevented by preincubating platelets with a complex-specific anti-IIb X IIIa monoclonal antibody, but not by preincubating platelets with an anti-IIIa monoclonal antibody. In order to determine whether loss of the IIb X IIIa complex primarily affects Ca2+ influx or Ca2+ efflux, both processes were also examined under nonsteady-state conditions. An immediate decrease in the 45Ca2+ influx rate was seen when Ca2+ was added back to platelets preincubated with EGTA at 37 degrees C. The 45Ca2+ efflux rate, on the other hand, was not immediately affected. These data suggest, therefore, that an intact IIb X IIIa complex is necessary for normal Ca2+ homeostasis in platelets.  相似文献   

14.
Platelet membrane glycoprotein (GP IIb-IIIa), besides its activity as adhesive protein receptor, displays a number of properties supporting its involvement in the mechanisms of transduction of the activation signal. Recently we have observed that GP IIb-IIIa ligands, mostly fibrinogen, inhibit Ca2+ movement and cytoskeleton reorganization caused by mild platelet activation. These findings led us to investigate the effect of GP IIb-IIIa ligands on agonist-induced platelet responses, with particular attention to the two major messenger generating systems, involving the activation of phospholipase C and the inhibition of cAMP production. In this paper we demonstrate that the occupancy of the major adhesive protein receptor on the platelet surface modulates the phosphatidylinositol cycle decreasing the amount of IP3, IP2 and IP produced after mild platelet activation as well as the pattern of protein phosphorylation. The platelet cAMP content of activated platelets was also affected and kept higher when evaluated under the same experimental conditions. Our data provide evidence for a role of fibrinogen binding in regulating the degree of activation of circulating platelets.  相似文献   

15.
Washed human platelets suspended in buffers containing either 1.8 mM Ca2+ and 0.49 mM Mg2+ or 1 mM EDTA were treated with human alpha-thrombin to induce secretion. Glycoprotein G, a major glycoprotein in alpha-granules, was quantitatively secreted from platelets activated in the EDTA-containing buffer but remained with the platelet in the presence of Ca2+ and Mg2+. Addition of Ca2+ to the platelets that were activated in the presence of EDTA caused glycoprotein G to bind to platelets. To determine if glycoprotein G is expressed on the membrane surface of the activated platelet, platelets were rapidly labeled by a method employing lactoperoxidase-catalyzed iodination. Although glycoprotein G was barely detected on the surface of unstimulated platelets, labveling 1 min after thrombin treatment showed that glycoprotein G rapidly became one of the prominent surface proteins. These findings show that an alpha-granule protein, glycoprotein G, is one of the major glycoproteins on the membrane surface of thrombin-activated platelets and that its binding is dependent on divalent cations.  相似文献   

16.
Fibrinogen binding to platelet plasma membranes, which is a prerequisite for platelet aggregation, was determined by incubating 125I-labeled fibrinogen with isolated membranes and measuring the amount of radioactivity sedimenting with the membranes through 15% sucrose. Fibrinogen binding was optimal at 10(-3) M Ca2+. Scatchard analyses of the fibrinogen binding showed that the membrane capacity for fibrinogen was 1.6 X 10(-12) mol/mg of membrane protein, with a dissociation constant (Kd) = 1.2 X 10(-8) M. When Ca2+ levels were manipulated by the addition of varying amounts of EGTA at a fixed Mg2+ concentration of 3 X 10(-3) M, specific binding of fibrinogen to platelet membranes occurred only at Ca2+ concentrations greater than or equal to 10(-6) M. Membranes isolated from platelets of an individual with Glanzmann's thrombasthenia bound only 12% as much fibrinogen as control platelets. The data in the present study suggest that there are two divalent cation binding sites that must be occupied for fibrinogen to bind: one site is specific for calcium and is saturated at 10(-6) M Ca2+; the other site is less specific and is saturated at a 10(-3) M concentration of either Ca2+ or Mg2+. Fibrinogen binding to intact platelets and, consequently, platelet aggregation only required 10(-3) M extracellular divalent cation and was not specific for Ca2+. These data indicate that the cytoplasm is a potential source for the requirement of 10(-6) M Ca2+, and that changes in the intracellular concentration of Ca2+ may cause the expression of fibrinogen receptors during ADP-induced platelet activation.  相似文献   

17.
Calcium is a cofactor of human platelet aggregation. Moreover a direct correlation between the ability of platelets to bind this divalent cation and to aggregate has been demonstrated. Since magnesium can substitute for calcium in supporting aggregation, especially in the presence of low calcium concentrations, and platelet aggregation is inhibited at low pH, the present study was designed to examine the effects of magnesium and low pH on 45calcium binding to human platelets, and to determine whether such effects might be associated with calcium binding to glycoproteins I (GPI) or IIb/IIIa (GPIIb/IIIa), the putative fibrinogen receptor. 45Calcium binding to aspirin-treated platelets that had been depleted of surface-associated calcium by brief exposure to EDTA was evaluated. Magnesium (5-10 mM) or a change in hydrogen ion concentration to decrease the pH from 7.5 to 6.0 was found to inhibit the binding of 45calcium to platelets from healthy donors by 34 +/- 6 and 32 +/- 8% (mean +/- SD, n = 13), respectively. Similar results were obtained with platelets incubated with chymotrypsin to selectively remove GPI or platelets from a patient with the Bernard Soulier Syndrome, congenitally deficient in GPI. In contrast, calcium binding to platelets from two patients with thrombasthenia, lacking GPIIb/IIIa, was reduced 49 +/- 6% and 42 +/- 8% (n = 4) by magnesium and hydrogen ions, respectively. This apparently increased inhibition was attributed to the combined effects of an overall decrease (approximately 50%) in calcium binding to thrombasthenic platelets compared with that in control platelets, and a similar absolute reduction in calcium binding in the presence of magnesium and/or hydrogen ions. No additional inhibition of 45calcium binding was noted in the presence of magnesium and at low pH, indicating that magnesium and hydrogen ions may affect the same platelet membrane binding sites. The data suggest that although modulation of platelet aggregation by magnesium and pH is accompanied by changes in platelet-associated calcium, calcium binding to the three major platelet membrane glycoproteins, GPI, IIb, and IIIa is unaffected.  相似文献   

18.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

19.
Arietin, an Arg-Gly-Asp containing peptide from venom of Bitis arietans, inhibited aggregation of platelets stimulated by a variety of agonists with a similar IC50, 1.3-2.7.10(-7) M. It blocked aggregation through the interference of fibrinogen binding to fibrinogen receptors on platelet surface. In this paper, we further demonstrated that arietin had no significant effect on the intracellular mobilization of Ca2+ in Quin2-AM-loaded platelets stimulated by thrombin. It inhibited 125I-fibrinogen binding to ADP-stimulated platelets in a competitive manner (IC50, 1.1.10(-7) M). 125I-arietin bound to unstimulated, ADP-stimulated and elastase-treated platelets in a saturable manner and its Kd values were estimated to be 3.4.10(-7), 3.4.10(-8) and 6.5.10(-8) M, respectively, while the corresponding binding sites were 46,904, 48,958 and 34,817 per platelet, respectively. Arg-Gly-Asp-Ser (RGDS) inhibited 125I-arietin binding to ADP-stimulated platelets in a competitive manner. RGD-containing peptides, including trigramin and rhodostomin, EDTA and monoclonal antibody, 7E3, raised against glycoprotein IIb-IIIa complex, inhibited 125I-arietin binding to ADP-stimulated platelets, indicating that the binding sites of arietin appear to be located at or near glycoprotein IIb-IIIa complex. In conclusion, arietin and other RGD-containing trigramin-like peptides preferentially bind to the fibrinogen receptors associated with glycoprotein IIb-IIIa complex of the activated platelets, thus leading to the blockade of fibrinogen binding to its receptors and subsequent aggregation. The presence of RGD of arietin is essential for the expression of its biological activity. Its binding sites are overlapped with those of trigramin, rhodostomin and the monoclonal antibody, 7E3.  相似文献   

20.
The effect of two monoclonal antibodies P2 (LyP 2) or P4 (LyP 4), specific for the platelet membrane glycoprotein IIb/IIIa complex, on binding of 125I-labelled fibrinogen or 125I-labelled fibronectin to thrombin-stimulated platelets was studied. These monoclonal antibodies are directed against different determinants on the IIb-IIIa complex and react only with the complex and not with the individual glycoproteins. Fibrinogen binding to thrombin-stimulated platelets was significantly inhibited by P2 but not by P4. Fibronectin binding to thrombin-stimulated platelets was significantly inhibited by P4 but only poorly by P2. These results indicate the presence of specific regions on the glycoprotein IIb-IIIa complex which act as binding sites for fibrinogen or fibronectin. Other authors [Haverstick et al. (1985) Blood 66, 946-952; Ginsberg et al. (1985) J. Biol. Chem. 260, 4133-4138] have shown that a tetrapeptide, Arg-Gly-Asp-Ser, inhibited the binding of fibrinogen, fibronectin, and von Willebrand factor (vWf) to stimulated platelets and that fibrinogen competes with vWf and fibronectin for binding. These findings, together with previous studies, therefore indicate the presence of specific regions as well as a common region in the binding sites for fibrinogen and fibronectin on the IIb-IIIa complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号