首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured DRGs in different gel scaffolds were analyzed using CA RS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CA RS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, ωps, to match the vibration of C–H bonds in the cell membrane, the CA RS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity. The results demonstrate that CA RS imaging allows monitoring of cellular growth in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of organogenesis processes in a tissue scaffold.Key words: dorsal root ganglia, neuronal growth, coherent anti-stokes raman scattering, nonlinear optical microscopy, label-free imaging, chondroitin sulfate, hyaluronic acid, poly(ethylene glycol) hydrogel  相似文献   

2.
Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm−1, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics.  相似文献   

3.
Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast data acquisition and high sensitivity has been developed for vibrational imaging of live cells. High three-dimensional (3D) resolution is achieved with two collinearly overlapped near infrared picosecond beams and a water objective with a high numerical aperture. Forward-detected CARS (F-CARS) and epi-detected CARS (E-CARS) images are recorded simultaneously. F-CARS is used for visualizing features comparable to or larger than the excitation wavelength, while E-CARS allows detection of smaller features with a high contrast. F-CARS and E-CARS images of live and unstained cells reveal details invisible in differential interference-contrast images. High-speed vibrational imaging of unstained cells undergoing mitosis and apoptosis has been carried out. For live NIH 3T3 cells in metaphase, 3D distribution of chromosomes is mapped at the frequency of the DNA backbone Raman band, while the vesicles surrounding the nucleus is imaged by E-CARS at the frequency of the C-H stretching Raman band. Apoptosis in NIH 3T3 cells is monitored using the CARS signal from aliphatic C-H stretching vibration.  相似文献   

4.
Despite the ubiquitous roles of lipids in biology, the detection of lipids has relied on invasive techniques, population measurements, or nonspecific labeling. Such difficulties can be circumvented by a label-free imaging technique known as coherent anti-Stokes Raman (CARS) microscopy, which is capable of chemically selective, highly sensitive, and high-speed imaging of lipid-rich structures with submicron three-dimensional spatial resolution. We review the broad applications of CARS microscopy to studies of lipid biology in cell cultures, tissue biopsies, and model organisms. Recent technical advances, limitations of the technique, and perspectives are discussed.  相似文献   

5.
Here we present a microscope setup for coherent anti-Stokes Raman scattering (CARS) imaging, devised to specifically address the challenges of in vivo experiments. We exemplify its capabilities by demonstrating how CARS microscopy can be used to identify vitamin A (VA) accumulations in the liver of a living mouse, marking the positions of hepatic stellate cells (HSCs). HSCs are the main source of extracellular matrix protein after hepatic injury and are therefore the main target of novel nanomedical strategies in the development of a treatment for liver fibrosis. Their role in the VA metabolism makes them an ideal target for a CARS-based approach as they store most of the body's VA, a class of compounds sharing a retinyl group as a structural motive, a moiety that is well known for its exceptionally high Raman cross section of the C═C stretching vibration of the conjugated backbone.  相似文献   

6.
A new vibrational imaging method based on coherent anti-Stokes Raman scattering (CARS) has been used for high-speed, selective imaging of neutral lipid droplets (LDs) in unstained live fibroblast cells. LDs have a high density of C-H bonds and show a high contrast in laser-scanning CARS images taken at 2,845 cm-1, the frequency for aliphatic C-H vibrations. The contrast from LDs was confirmed by comparing CARS and Oil Red O (ORO)-stained fluorescence images. The fluorescent labeling processes were examined with CARS microscopy. It was found that ORO staining of fixed cells caused aggregation of LDs, whereas fixing with formaldehyde or staining with Nile Red did not affect LDs. CARS microscopy was also used to monitor the 3T3-L1 cell differentiation process, revealing that there was an obvious clearance of LDs at the early stage of differentiation. After that, the cells started to differentiate and reaccumulate LDs in the cytoplasm in a largely unsynchronized manner. Differentiated cells formed small colonies surrounded by undifferentiated cells that were devoid of LDs. These observations demonstrate that CARS microscopy can follow dynamic changes in live cells with chemical selectivity and noninvasiveness. CARS microscopy, in tandem with other techniques, provides exciting possibilities for studying LD dynamics under physiological conditions without perturbation of cell functions.  相似文献   

7.
8.
Li L  Wang H  Cheng JX 《Biophysical journal》2005,89(5):3480-3490
We demonstrate quantitative vibrational imaging of specific lipid molecules in single bilayers using laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with a lateral resolution of 0.25 mum. A lipid is spectrally separated from other molecules by using deuterated acyl chains that provide a large CARS signal from the symmetric CD(2) stretch vibration around 2100 cm(-1). Our temperature control experiments show that d62-DPPC has similar bilayer phase segregation property as DPPC when mixing with DOPC. By using epi-detection and optimizing excitation and detection conditions, we are able to generate a clear vibrational contrast from d62-DPPC of 10% molar fraction in a single bilayer of DPPC/d62-DPPC mixture. We have developed and experimentally verified an image analysis model that can derive the relative molecular concentration from the difference of the two CARS intensities measured at the peak and dip frequencies of a CARS band. With the above strategies, we have measured the molar density of d62-DPPC in the coexisting domains inside the DOPC/d62-DPPC (1:1) supported bilayers incorporated with 0-40% cholesterol. The observed interesting changes of phospholipid organization upon addition of cholesterol to the bilayer are discussed.  相似文献   

9.
Water can pass through biological membranes via two pathways: simple diffusion through the lipid bilayer, or water-selective facilitated diffusion through aquaporins (AQPs). Although AQPs play an important role in osmotic water permeability (Pf), the role of AQPs in diffusional water permeability remains unclear because of the difficulty of measuring diffusional water permeability (Pd). Here, we report an accurate and instantaneous method for measuring the Pd of a single HeLa S3 cell using coherent anti-Stokes Raman scattering (CARS) microscopy with a quick perfusion device for H2O/D2O exchange. Ultra-high-speed line-scan CARS images were obtained every 0.488 ms. The average decay time constant of CARS intensities (τCARS) for the external solution H2O/D2O exchange was 16.1 ms, whereas the intracellular H2O/D2O exchange was 100.7 ± 19.6 ms. To evaluate the roles of AQP in diffusional water permeability, AQP4 fused with enhanced green fluorescent protein (AQP4-EGFP) was transiently expressed in HeLa S3 cells. The average τCARS for the intracellular H2O/D2O exchange in the AQP4-EGFP-HeLa S3 cells was 43.1 ± 15.8 ms. We also assessed the cell volume and the cell surface area to calculate Pd. The average Pd values for the AQP4-EGFP-HeLa S3 cells and the control EGFP-HeLa S3 cells were 2.7 ± 1.0 × 10−3 and 8.3 ± 2.6 × 10−4 cm/s, respectively. AQP4-mediated water diffusion was independent of the temperature but was dependent on the expression level of the protein at the plasma membrane. These results suggest the possibility of using CARS imaging to investigate the hydrodynamics of single mammalian cells as well as the regulation of AQPs.  相似文献   

10.
Polarization sensitive coherent anti-Stokes Raman scattering (PCARS) spectroscopy is a fruitful technique to study Raman vibrations of diluted molecules under off-electron resonant conditions. We apply PCARS as a direct spectroscopic method to investigate the broad amide I band of proteins in heavy water. In spontaneous Raman spectroscopy, this band is not well resolved. We fit a number of spectra taken of each protein under different polarization conditions, with a single set of parameters. It then appears that some substructure is observed in the amide I band. From this substructure, we determine the percentage of alpha-helix, beta-sheet, and random coil for the proteins lysozyme, albumin, ribonuclease A, and alpha-chymotrypsin.  相似文献   

11.
The absorptive cells of the small intestine, enterocytes, are not generally thought of as a cell type that stores triacylglycerols (TGs) in cytoplasmic lipid droplets (LDs). We revisit TG metabolism in enterocytes by ex vivo and in vivo coherent anti-Stokes Raman scattering (CARS) imaging of small intestine of mice during dietary fat absorption (DFA). We directly visualized the presence of LDs in enterocytes. We determined lipid amount and quantified LD number and size as a function of intestinal location and time post-lipid challenge via gavage feeding. The LDs were confirmed to be primarily TG by biochemical analysis. Combined CARS and fluorescence imaging indicated that the large LDs were located in the cytoplasm, associated with the tail-interacting protein of 47 kDa. Furthermore, in vivo CARS imaging showed real-time variation in the amount of TG stored in LDs through the process of DFA. Our results highlight a dynamic, cytoplasmic TG pool in enterocytes that may play previously unexpected roles in processes, such as regulating postprandial blood TG concentrations.  相似文献   

12.
Nonperturbative monitoring of intracellular organelle transport in unstained living cells was achieved with coherent anti-Stokes Raman scattering (CARS) microscopy. To avoid possible interference with the organelle transport introduced by laser radiation, we first examined different illumination conditions. Using a new photodamage criterion based on morphological changes of the cells, we determined the threshold values of both pulse energy and average power at relevant wavelengths. Under excitation conditions much milder than the threshold levels, we were able to monitor the motions of lipid droplet (LD) organelles in steroidogenic mouse adrenal cortical (Y-1) cells with CARS microscopy in real time without perturbations to the cells. Particle tracking analyses revealed subdiffusion as well as active transport of LDs along microtubules. Interestingly, LD active transport is only present in Y-1 cells that rounded up in culture, a morphological change associated with steroidogenesis, suggesting possible involvements of LD active transport in the latter. Simultaneous imaging of LDs and mitochondria with CARS and two-photon fluorescence microscopy clearly showed that interactions between the two organelles could be facilitated by high LD motility. These observations demonstrate CARS microscopy as a powerful noninvasive imaging tool for studying dynamic processes in living cells.  相似文献   

13.
Coherent anti-Stokes Raman scattering spectra, in resonance with the isoalloxazine visible electronic transition, have been obtained down to 300 cm?1 for flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase, in H2O and D2O. Several isoalloxazine vibrational modes can be identified by analogy with those of uracil. Of particular interest is a band at ~1255 cm?1 in H2O, which is replaced by another at ~1295 cm?1, in D2O. The H2O band appears to be a sensitive monitor of H-bonding of the N3 isoalloxazine proton to a protein acceptor group. It shifts down by 10 cm?1 in riboflavin binding protein, and disappears altogether in glucose oxidase. Other band shifts, of 3–5 cm?1, are similar for the two flavoproteins, and may reflect environmental changes between aqueous solution and the protein binding pockets.  相似文献   

14.
Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2)Q(15)K(2)) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1). CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1)) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1)) signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro.  相似文献   

15.
Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ~10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.  相似文献   

16.
17.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two‐photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5‐aminolevulinic acid‐induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition.

Experimental glioblastoma expressing green fluorescent protein.  相似文献   


18.
The accumulation of lipids in non-adipose tissues is attracting increasing attention due to its correlation with obesity. In muscle tissue, ectopic deposition of specific lipids is further correlated with pathogenic development of insulin resistance and type 2 diabetes. Most intramyocellular lipids are organized into lipid droplets (LDs), which are metabolically active organelles. In order to better understand the putative role of LDs in pathogenesis, insight into both the location of LDs and nearby chemistry of muscle tissue is very useful. Here, we demonstrate the use of label-free coherent anti-Stokes Raman scattering (CARS) microscopy in combination with multivariate, chemometric analysis to visualize intracellular lipid accumulations in ex vivo muscle tissue. Consistent with our previous results, hyperspectral CARS microscopy showed an increase in LDs in tissues where LD proteins were overexpressed, and further chemometric analysis showed additional features morphologically (and chemically) similar to mitochondria that colocalized with LDs. CARS imaging is shown to be a very useful method for label-free stratification of ectopic fat deposition and cellular organelles in fresh tissue sections with virtually no sample preparation.  相似文献   

19.
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. However, the imaging speed and sensitivity are currently limited by the noise of the light beam probing the Raman process. In this paper, we present a fast non-average denoising and high-precision Raman shift extraction method, based on a self-reinforcing signal-to-noise ratio (SNR) enhancement algorithm, for SRS spectroscopy and microscopy. We compare the results of this method with the filtering methods and the reported experimental methods to demonstrate its high efficiency and high precision in spectral denoising, Raman peak extraction and image quality improvement. We demonstrate a maximum SNR enhancement of 10.3 dB in fixed tissue imaging and 11.9 dB in vivo imaging. This method reduces the cost and complexity of the SRS system and allows for high-quality SRS imaging without use of special laser, complicated system design and Raman tags.  相似文献   

20.
Microscopic imaging of cells and tissues are generated by the interaction of light with either the sample itself or contrast agents that label the sample. Most contrast agents, however, alter the cell in order to introduce molecular labels, complicating live cell imaging. The interaction of light from multiple laser sources has given rise to microscopy, based on Raman scattering or vibrational resonance, which demonstrates selectivity to specific chemical bonds while imaging unmodified live cells. Here, we discuss the nonlinear optical technique of coherent anti-Stokes Raman scattering (CARS) microscopy, its instrumentation, and its status in live cell imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号