首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most therapeutic monoclonal antibodies (mAbs) licensed for human use or in clinical development are indicated for treatment of patients with cancer and inflammatory/autoimmune disease and as such, are designed to directly interact with the immune system. A major hurdle for the development and early clinical investigation of many of these immunomodulatory mAbs is their inherent risk for adverse immune-mediated drug reactions in humans such as infusion reactions, cytokine storms, immunosuppression and autoimmunity. A thorough understanding of the immunopharmacology of a mAb in humans and animals is required to both anticipate the clinical risk of adverse immunotoxicological events and to select a safe starting dose for first-in-human (FIH) clinical studies. This review summarizes the most common adverse immunotoxicological events occurring in humans with immunomodulatory mAbs and outlines non-clinical strategies to define their immunopharmacology and assess their immunotoxic potential, as well as reduce the risk of immunotoxicity through rational mAb design. Tests to assess the relative risk of mAb candidates for cytokine release syndrome, innate immune system (dendritic cell) activation and immunogenicity in humans are also described. The importance of selecting a relevant and sensitive toxicity species for human safety assessment in which the immunopharmacology of the mAb is similar to that expected in humans is highlighted, as is the importance of understanding the limitations of the species selected for human safety assessment and supplementation of in vivo safety assessment with appropriate in vitro human assays. A tiered approach to assess effects on immune status, immune function and risk of infection and cancer, governed by the mechanism of action and structural features of the mAb, is described. Finally, the use of immunopharmacology and immunotoxicity data in determining a minimum anticipated biologic effect Level (MABEL) and in the selection of safe human starting dose is discussed.Key words: monoclonal antibodies, non-clinical testing, immunopharmacology, immunotoxicity, cytokine release, immunosuppression, autoimmunity, hypersensitivity, immunogenicity, anti-drug antibody, MABEL  相似文献   

2.
《MABS-AUSTIN》2013,5(2):104-111
Monoclonal antibodies (mAbs) are large molecules intended to bind to specific targets often expressed on the immune system, and to treat various immunopathological conditions. Therefore, mAbs can be considered to have a high potential for immunotoxicity, which is reflected in the clinical experience accumulated on mAbs-induced adverse effects related to immunosuppression, immunostimulation, and hypersensitivity (immunogenicity). So far, non clinical immunotoxicity studies have been inadequate to address all safety issues in relation to the possible immunotoxicity of mAbs, because they are fraught with limitations and pitfalls primarily related to the lack of relevant animal species. In addition, clinical studies rarely include validated end-points dedicated to the prediction of immunotoxicity. With the ongoing development of mAbs as novel therapeutic strategies for a wide variety of diseases, efforts should be paid to improve our understanding of mAbs-induced immunotoxic effects and design dedicated strategies to assess their immunological safety, both non clinically and clinically.  相似文献   

3.
Monoclonal antibodies (mAbs) are large molecules intended to bind to specific targets often expressed on the immune system, and to treat various immunopathological conditions. Therefore, mAbs can be considered to have a high potential for immunotoxicity, which is reflected in the clinical experience accumulated on mAbs-induced adverse effects related to immunosuppression, immunostimulation and hypersensitivity (immunogenicity). So far, non clinical immunotoxicity studies have been inadequate to address all safety issues in relation to the possible immunotoxicity of mAbs, because they are fraught with limitations and pitfalls primarily related to the lack of relevant animal species. In addition, clinical studies rarely include validated end-points dedicated to the prediction of immunotoxicity. With the ongoing development of mAbs as novel therapeutic strategies for a wide variety of diseases, efforts should be paid to improve our understanding of mAbs-induced immunotoxic effects and design dedicated strategies to assess their immunological safety, both non clinically and clinically.Key words: immunotoxicology, monoclonal antibodies, immunological safety evaluation  相似文献   

4.
Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.  相似文献   

5.
《Cytokine》2013,61(3):828-837
The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats.We have characterized a whole human blood cytokine release assay with only minimal dilution by the test antibodies (95% v/v blood) in aqueous presentation format, an assay which has so far received less attention in the scientific world with respect to the evaluation of its suitability to predict cytokine release in humans. This format was compared with a human PBMC assay with immobilized mAbs presentation already well-characterized by others. Cytokine secretion into plasma or cell culture supernatants after 24 h incubation with the test mAbs (anti-CD28 superagonist TGN1412-like material (TGN1412L), another anti-CD28 superagonistic mAb (ANC28.1), a T-cell depleting mAb (Orthoclone™), and a TGN1412 isotype-matched control (Tysabri™) not associated with clinically-relevant cytokine release) was detected by a multiplex assay based on electrochemiluminescent excitation.We provide proof that this whole blood assay is a suitable new method for hazard identification of safety-relevant cytokine release in the clinic based on its ability to detect the typical cytokine signatures found in humans for the tested mAbs and on a markedly lower assay background and cytokine release with the isotype-matched control mAb Tysabri™ – a clear advantage over the PBMC assay. Importantly, quantitative and qualitative differences in the relative cytokine responses to the individual mAbs, in the concentration-response relationships and the prominent cytokine signatures for individual mAbs in the two formats reflect diverging mechanisms of cytokine release and different levels of dependency on high density coating even for two anti-CD28 super-agonistic antibodies. These results clearly show that one generic approach to assessment of cytokine release using in vitro assays is not sufficient, but rather the choice of the method, i.e. applying the whole blood assay or the PBMC assay needs to be well considered depending on the target characteristics and the mechanistic features of the therapeutic mAbs being evaluated.  相似文献   

6.
《MABS-AUSTIN》2013,5(1):265-275
Monoclonal antibodies (mAbs) play an increasing important role in the therapeutic armamentarium against multiple sclerosis (MS), an inflammatory and degenerative disorder of the central nervous system. Most of the mAbs currently developed for MS are immunomodulators blocking the inflammatory immune process. In contrast with mAbs targeting immune function, GNbAC1, a humanized IgG4 mAb, targets the multiple sclerosis associated retrovirus envelope (MSRV-Env) protein, an upstream factor in the pathophysiology of MS. MSRV-Env protein is of endogenous retroviral origin, expressed in MS brain lesions, and it is pro-inflammatory and toxic to the remyelination process, by preventing the differentiation of oligodendrocyte precursor cells. We present the preclinical and early clinical development results of GNbAC1. The specificity of GNbAC1 for its endogenous retroviral target is described. Efficacy of different mAb versions of GNbAC1 were assessed in MSRV-Env induced experimental allergic encephalitis (EAE), an animal model of MS. Because the target MSRV-Env is not expressed in animals, no relevant animal model exists for a proper in vivo toxicological program. An off-target 2-week toxicity study in mice was thus performed, and it showed an absence of safety risk. Additional in vitro analyses showed an absence of complement or antibody-dependent cytotoxicity as well as a low level of cross-reactivity to human tissues. The first-in-man clinical study in 33 healthy subjects and a long-term clinical study in 10 MS patients showed that GNbAC1 is well tolerated in humans without induction of immunogenicity and that it induces a pharmacodynamic response on MSRV biomarkers. These initial results suggest that the mAb GNbAC1 could be a safe long-term treatment for patients with MS with a unique therapeutic mechanism of action.  相似文献   

7.
Monoclonal antibodies (mAbs) play an increasing important role in the therapeutic armamentarium against multiple sclerosis (MS), an inflammatory and degenerative disorder of the central nervous system. Most of the mAbs currently developed for MS are immunomodulators blocking the inflammatory immune process. In contrast with mAbs targeting immune function, GNbAC1, a humanized IgG4 mAb, targets the multiple sclerosis associated retrovirus envelope (MSRV-Env) protein, an upstream factor in the pathophysiology of MS. MSRV-Env protein is of endogenous retroviral origin, expressed in MS brain lesions, and it is pro-inflammatory and toxic to the remyelination process, by preventing the differentiation of oligodendrocyte precursor cells. We present the preclinical and early clinical development results of GNbAC1. The specificity of GNbAC1 for its endogenous retroviral target is described. Efficacy of different mAb versions of GNbAC1 were assessed in MSRV-Env induced experimental allergic encephalitis (EAE), an animal model of MS. Because the target MSRV-Env is not expressed in animals, no relevant animal model exists for a proper in vivo toxicological program. An off-target 2-week toxicity study in mice was thus performed, and it showed an absence of safety risk. Additional in vitro analyses showed an absence of complement or antibody-dependent cytotoxicity as well as a low level of cross-reactivity to human tissues. The first-in-man clinical study in 33 healthy subjects and a long-term clinical study in 10 MS patients showed that GNbAC1 is well tolerated in humans without induction of immunogenicity and that it induces a pharmacodynamic response on MSRV biomarkers. These initial results suggest that the mAb GNbAC1 could be a safe long-term treatment for patients with MS with a unique therapeutic mechanism of action.  相似文献   

8.
The components of the immune system have not been traditionally emphasized as potential target organs in standard developmental and reproductive toxicity (DART) protocols. A number of workshops have been organized in recent years to examine scientific questions that underlie developmental immunotoxicity tests, and the interpretation of results as they relate to human risk assessment. A key question that must be addressed is to determine the most appropriate species and strains to model the developing human immune system. The objective of this review is to compare the anatomical and functional development of the immune system in several species important to either preclinical studies for drug development or safety assessments for chemicals, with what is known in humans. The development of the immune system in humans will be compared to what is known in mice, rats, dogs and nonhuman primates.  相似文献   

9.
The immunogenicity of biopharmaceuticals used in clinical practice remains an unsolved challenge in drug development. Non-human primates (NHPs) are often the only relevant animal model for the development of monoclonal antibodies (mAbs), but the immune response of NHPs to therapeutic mAbs is not considered to be predictive of the response in humans because of species differences. In this study, we accessed the drug registration files of all mAbs registered in the European Union to establish the relative immunogenicity of mAbs in NHPs and humans. The incidence of formation of antidrug-antibodies in NHPs and patients was comparable in only 59% of the cases. In addition, the type of antidrug-antibody response was different in NHP and humans in 59% of the cases. Humanization did not necessarily reduce immunogenicity in humans. Immunogenicity interfered with the safety assessment during non-clinical drug development when clearing or neutralizing antibodies were formed. While important to interpret the study results, immunogenicity reduced the quality of NHP data in safety assessment. These findings confirm that the ability to compare relative immunogenicity of mAbs in NHPs and humans is low. Furthermore, immunogenicity limits the value of informative NHP studies.  相似文献   

10.
《MABS-AUSTIN》2013,5(1):276-280
A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs.  相似文献   

11.
A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs.  相似文献   

12.
The N. Blokhin National Cancer Research Center is one of the few Russian scientific institutions in which hybridoma technology of monoclonal antibody (mAb) production has been successfully established. Using this technology, several dozens of mAbs to various antigens of human leukocytes have been elaborated. These mAbs are widely used for immune status evaluation and for differential diagnostics of leukemias. Two mAbs were used to develop therapeutic drugs. Imuteran is a pharmaceutical form of mAb ICO-25 against a mucin-like antigen of human milk fat globules and proposed for treatment of epithelial cell-originating cancers (breast, intestinal, ovarian, lung cancer, etc.). ThePhase II clinical study of this agent is now nearly completed, and preliminary results suggest Imuteran to be a promising anticancer agent with tumor-stabilizing activity, but patients should be carefully monitored for signs of allergic reactions. mAb ICO-90 against the CD3 antigen of human T lymphocytes was used to develop the therapeutic agent Atemonate proposed for treatment of acute transplant rejection. At present, the Phase II clinical study of this agent is over, and the results confirm the drug safety and efficacy for this indication. The drug is being registered at the Ministry of Healthcare and Social Development, and transfer to serial production is expected shortly.  相似文献   

13.
Therapeutic monoclonal antibodies (mAbs) such as the superagonistic, CD28-specific antibody TGN1412, or OKT3, an anti-CD3 mAb, can cause severe adverse events including cytokine release syndrome. A predictive model for mAb-mediated adverse effects, for which no previous knowledge on severe adverse events to be expected or on molecular mechanisms underlying is prerequisite, is not available yet. We used a humanized mouse model of human peripheral blood mononuclear cell-reconstituted NOD-RAG1-/--/-HLADQ(tg+ or tg-)IL-2Rγc-/- mice to evaluate its predictive value for preclinical testing of mAbs. 2–6 hours after TGN1412 treatment, mice showed a loss of human CD45+ cells from the peripheral blood and loss of only human T cells after OKT3 injection, reminiscent of effects observed in mAb-treated humans. Moreover, upon OKT3 injection we detected selective CD3 downmodulation on T cells, a typical effect of OKT3. Importantly, we detected release of human cytokines in humanized mice upon both OKT3 and TGN1412 application. Finally, humanized mice showed severe signs of illness, a rapid drop of body temperature, and succumbed to antibody application 2–6 hours after administration. Hence, the humanized mouse model used here reproduces several effects and adverse events induced in humans upon application of the therapeutic mAbs OKT3 and TGN1412.  相似文献   

14.
Monoclonal antibodies (mAbs) named 8C2 and 6E3, directed against the recombinant human granulocyte colony-stimulating factor (hG-CSF), were used as probes to study the cytokine orientation on its binding to receptors from human placenta. Competition enzyme linked immunoabsorbent assays (ELISA) revealed that mAb 8C2 would be directed to a linear epitope, whereas mAb 6E3 would delimit a more assembled epitope. Gel-filtration high performance liquid chromatography (HPLC) of the immune complexes formed by incubating [(125)I]hG-CSF with each mAb showed that epitope 8C2, but not 6E3, was altered after cytokine iodination. In addition, mAb 6E3 completely inhibited [(125)I]hG-CSF binding to human placental microsomes. Although [(125)I]mAb 6E3 was unable to bind to preformed hG-CSF-receptor complexes, [(125)I]mAb 8C2 did recognize hG-CSF previously bound to receptors, suggesting that epitope 8C2 would remain accessible in the hG-CSF-receptor complex. To identify the cytokine region defined by mAbs, hG-CSF was digested with different proteolytic enzymes: Arg-C, Glu-C, trypsin and alpha chymotrypsin. Immunoreactivity of the resulting peptides was examined by Western blot and their sequences were established by Edman degradation. Results showed that mAb 6E3 would be directed to a conformation-dependent epitope located close to the hG-CSF binding domain and included into the sequence 1-122/123, whereas mAb 8C2 recognized the region 41-58, which represents a linear epitope left exposed after cytokine binding to receptors from human placenta.  相似文献   

15.
The market for biotherapeutic monoclonal antibodies (mAbs) is large and is growing rapidly. However, attrition poses a significant challenge for the development of mAbs, and for biopharmaceuticals in general, with large associated costs in resource and animal use. Termination of candidate mAbs may occur due to poor translation from preclinical models to human safety. It is critical that the industry addresses this problem to maintain productivity. Though attrition poses a significant challenge for pharmaceuticals in general, there are specific challenges related to the development of antibody-based products. Due to species specificity, non-human primates (NHP) are frequently the only pharmacologically relevant species for nonclinical safety and toxicology testing for the majority of antibody-based products, and therefore, as more mAbs are developed, increased NHP use is anticipated. The integration of new and emerging in vitro and in silico technologies, e.g., cell- and tissue-based approaches, systems pharmacology and modeling, have the potential to improve the human safety prediction and the therapeutic mAb development process, while reducing and refining animal use simultaneously. In 2014, to engage in open discussion about the challenges and opportunities for the future of mAb development, a workshop was held with over 60 regulators and experts in drug development, mechanistic toxicology and emerging technologies to discuss this issue. The workshop used industry case-studies to discuss the value of the in vivo studies and identify opportunities for in vitro technologies in human safety assessment. From these and continuing discussions it is clear that there are opportunities to improve safety assessment in mAb development using non-animal technologies, potentially reducing future attrition, and there is a shared desire to reduce animal use through minimised study design and reduced numbers of studies.  相似文献   

16.
Fc-modified anti-human CD3ε monoclonal antibodies (mAbs) are in clinical development for the treatment of autoimmune diseases. These next generation mAbs have completed clinical trials in patients with type-1 diabetes and inflammatory bowel disease demonstrating a narrow therapeutic window. Lowered doses are ineffective, yet higher pharmacologically-active doses cause an undesirable level of adverse events. Thus, there is a critical need for a return to bench research to explore ways of improving clinical outcomes. Indeed, we recently reported that a short course of treatment affords synergy, providing long-term disease amelioration when combining anti-mouse CD3 and anti-mouse tumor necrosis factor mAbs in experimental arthritis. Such strategies may widen the window between risk and benefit; however, to more accurately assess experimentally the biology and pharmacology, reagents that mimic the current development candidates were required. Consequently, we engineered an Fc-modified anti-mouse CD3ε mAb, 2C11-Novi. Here, we report the functional characterization of 2C11-Novi demonstrating that it does not bind FcγR in vitro and elicits little cytokine release in vivo, while maintaining classical pharmacodynamic effects (CD3-TCR downregulation and T cell killing). Furthermore, we observed that oral administration of 2C11-Novi ameliorated progression of remitting-relapsing experimental autoimmune encephalitis in mice, significantly reducing the primary acute and subsequent relapse phase of the disease. With innovative approaches validated in two experimental models of human disease, 2C11-Novi represents a meaningful tool to conduct further mechanistic studies aiming at exploiting the immunoregulatory properties of Fc-modified anti-CD3 therapies via combination therapy using parenteral or oral routes of administration.  相似文献   

17.
Prophylaxis of hemolytic disease of newborns is based on the ability of polyclonal anti-D antibodies for sup-pressing maternal immune response against D-positive fetal red blood cells. The immunosuppressive effect of anti-D antibody is mediated by interaction between its Fc-fragment and low-affinity IgG Fc-receptor (FcγR) on the immune cell. No clinically effective monoclonal anti-D antibody (mAb) that can replace polyclonal anti-D immunoglobulin has been developed yet. The goals of this study were comparison of structural and functional properties of human anti-D polyclonal and monoclonal Abs and assessment of the possibility to manipulate the effector properties of the mAb. N-Glycosylation and particularly the content of nonfucosylated glycans are crucial for affinity of mAb to FcγRIIIA, which plays the key role in the clearance of sensitized cells. We studied and compared glycoprofiles and FcγRIIIA-mediated hemolytic ability of human polyclonal antibodies and anti-D mAbs produced by human B-cell lines, human-rodent heterohybridomas, and a human non-lymphoid cell line PER.C6. Replacement of producing cell line and use of glycosylation modulators can convert an inert mAb into an active one. Nevertheless, rodent cell lines, as well as human non-lymphoid cells, distort natural glycosylation of human IgG and could lead to the loss of immunosuppressive properties. All of the anti-D mAbs secreted by human B-cell lines have a glycoprofile close to human serum IgG. Hence, the constant ratio of IgG glycoforms in human serum is predetermined by glycosylation at the level of the individual antibody-producing cell. The anti-D fraction of polyclonal anti-D immunoglobulin compared to the total human IgG contains more nonfucosylated glycans. Thus, only human trans-formed B-cells are an appropriate source for efficient anti-D mAbs that can imitate the action of polyclonal anti-D IgG.  相似文献   

18.
Several CD4 mAbs have entered the clinic for the treatment of autoimmune diseases or transplant rejection. Most of these mAbs caused CD4 cell depletion, and some were murine mAbs which were further hampered by human anti-mouse Ab responses. To obviate these concerns, a primatized CD4 mAb, clenoliximab, was generated by fusing the V domains of a cynomolgus macaque mAb to human constant regions. The heavy chain constant region is a modified IgG4 containing two single residue substitutions designed to ablate residual Fc receptor binding activity and to stabilize heavy chain dimer formation. This study compares and contrasts the in vitro properties of clenoliximab with its matched IgG1 derivative, keliximab, which shares the same variable regions. Both mAbs show potent inhibition of in vitro T cell responses, lack of binding to complement component C1q, and inability to mediate complement-dependent cytotoxicity. However, clenoliximab shows markedly reduced binding to Fc receptors and therefore does not mediate Ab-dependent cell-mediated cytotoxicity or modulation/loss of CD4 from the surface of T cells, except in the presence of rheumatoid factor or activated monocytes. Thus, clenoliximab retains the key immunomodulatory attributes of keliximab without the liability of strong Fcgamma receptor binding. In initial clinical trials, these properties have translated to a reduced incidence of CD4+ T cell depletion.  相似文献   

19.
The CD28-specific mAb TGN1412 rapidly caused a life-threatening "cytokine storm" in all six healthy volunteers in the Phase I clinical trial of this superagonist, signaling a failure of preclinical safety testing. We report novel in vitro procedures in which TGN1412, immobilized in various ways, is presented to human white blood cells in a manner that stimulates the striking release of cytokines and profound lymphocyte proliferation that occurred in vivo in humans. The novel procedures would have predicted the toxicity of this superagonist and are now being applied to emerging immunotherapeutics and to other therapeutics that have the potential to act upon the immune system. Data from these novel procedures, along with data from in vitro and in vivo studies in nonhuman primates, suggest that the dose of TGN1412 given to human volunteers was close to the maximum immunostimulatory dose and that TGN1412 is not a superagonist in nonhuman primates.  相似文献   

20.
 Gangliosides GD3, GD2 and GM2, which are the major gangliosides expressed on most human cancers of neuroectodermal and epithelial origin, have been focused on as effective targets for passive immunotherapy with monoclonal antibodies. We previously developed a chimeric anti-GD3 mAb, KM871, and a humanized anti-GM2 mAb, KM8969, which specifically bound to the respective antigen with high affinity and showed potent immune effector functions. Humanization of anti-ganglioside antibody is expected to enhance its use for human cancer therapy. In the present study, we generated a chimeric anti-GD2 mAb, KM1138, and further developed the humanized form of anti-GD2 and anti-GD3 mAbs by the complementarity-determining regions grafting method. The resultant humanized anti-GD2 mAb, KM8138, and anti-GD3 mAb, KM8871, showed binding affinity and specificity similar to those of their chimeric counterparts. In addition, both humanized mAbs had functional potency comparable to the chimeric mAbs in mediating the immune effector functions, consisting of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The production of these humanized anti-ganglioside mAbs, with potent effector functions and low immunogenicity, precedes the evaluation of the therapeutic value of anti-ganglioside mAbs in passive immunotherapy and the target validation for ganglioside-based vaccine therapy. Received: 30 November 2000 / Accepted: 30 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号