首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
IgA antibodies constitute an important part of the mucosal immune system, but their immunotherapeutic potential remains rather unexplored, in part due to biotechnological issues. For example, the IgA2m(1) allotype carries an unusual heavy and light chain pairing, which may confer production and stability concerns. Here, we report the generation and the biochemical and functional characterization of a P221R-mutated IgA2m(1) antibody against the epidermal growth factor receptor (EGFR). Compared with wild type, the mutated antibody demonstrated heavy chains covalently linked to light chains in monomeric as well as in joining (J)-chain containing dimeric IgA. Functional studies with wild type and mutated IgA2m(1) revealed similar binding to EGFR and direct effector functions such as EGFR down-modulation and growth inhibition. Furthermore, both IgA molecules triggered similar levels of indirect tumor cell killing such as antibody-dependent cell-mediated cytotoxicity (ADCC) by isolated monocytes, activated polymorphonuclear cells, and human whole blood. Interestingly, the dimeric IgA antibodies demonstrated higher efficiency in direct as well as in indirect effector mechanisms compared with their respective monomeric forms. Both wild type and mutated antibody triggered effective FcαRI-mediated tumor cell killing by macrophages already at low effector to target cell ratios. Interestingly, also polarized macrophages mediated significant IgA2-mediated ADCC. M2 macrophages, which have been described as promoting tumor growth and progression, may convert to ADCC-mediating effector cells in the presence of EGFR-directed antibodies. In conclusion, these results provide further insight into the immunotherapeutic potential of recombinant IgA antibodies for tumor immunotherapy and suggest macrophages as an additional effector cell population.  相似文献   

2.
We have identified sites for epitope insertion in the murine secretory component (SC) by replacing individual surface-exposed loops in domains I, II, and III with the FLAG sequence (Crottet, P., Peitsch, M. C., Servis, C., and Corthésy, B. (1999) J. Biol. Chem. 274, 31445-31455). We had previously shown that epitope-carrying SC reassociated with dimeric IgA (IgA(d)) can serve as a mucosal delivery vehicle. When analyzing the capacity of SC mutants to associate with IgA(d), we found that all domain II and III mutants bound specifically with immobilized IgA(d), and their affinity for IgA(d) was comparable to that of the wild type protein (IC(50) approximately 1 nM). We conclude that domains II and III in SC are permissive to local mutation and represent convenient sites to antigenize the SC molecule. No mutant bound to monomeric IgA. SC mutants exposing the FLAG at their surface maintained this property once bound to IgA(d), thereby defining regions not required for high affinity binding to IgA(d). Association of IgA(d) with SC mutants carrying a buried FLAG did not expose de novo the epitope, consistent with limited, local changes in the SC structure upon binding. Only wild type and two mutant SCs bound covalently to IgA(d), thus implicating domains II and III in the correct positioning of the reactive cysteine in SC. This establishes that the integrity of murine SC domains II and III is not essential to preserve specific IgA(d) binding but is necessary for covalency to take place. Finally, SC mutants existing in the monomeric and dimeric forms exhibited the same IgA(d) binding capacity as monomeric wild type SC known to bind with a 1:1 stoichiometry.  相似文献   

3.
Dimeric IgA Abs contribute significantly to the humoral part of the mucosal immune system. However, their potential as immunotherapeutic agent has hardly been explored. In this article, we describe the production, purification, and functional evaluation of recombinant dimeric IgA against the epidermal growth factor receptor. Human joining chain-containing IgA was produced by nonadherent Chinese hamster ovarian (CHO)-K1 cells under serum-free conditions. Purification by anti-human κ and anti-His-tag affinity, as well as size exclusion chromatography, resulted in a homogenous preparation of highly pure IgA dimers. Functional studies demonstrated dimeric IgA to be at least as effective as monomeric IgA in triggering Ab-dependent cellular cytotoxicity by isolated monocytes or polymorphonuclear cell and in human whole-blood assays. Importantly, dimeric IgA was more effective in F(ab)-mediated killing mechanisms, such as inhibition of ligand binding, receptor downmodulation, and growth inhibition. Furthermore, only dimeric but not monomeric IgA or IgG was directionally transported by the polymeric Ig receptor through an epithelial cell monolayer. Together, these studies demonstrate that recombinant dimeric IgA Abs recruit a distinct repertoire of effector functions compared with monomeric IgA or IgG1 Abs.  相似文献   

4.
Human IgG2 antibodies may exist in at least three distinct structural isomers due to disulfide shuffling within the upper hinge region. Antibody interactions with Fc gamma receptors and the complement component C1q contribute to immune effector functions. These interactions could be impacted by the accessibility and structure of the hinge region. To examine the role structural isomers may have on effector functions, a series of cysteine to serine mutations were made on a human IgG2 backbone. We observed structural homogeneity with these mutants and mapped the locations of their disulfide bonds. Importantly, there was no observed difference in binding to any of the Fc gamma receptors or C1q between the mutants and the wild‐type IgG2. However, differences were seen in the apparent binding affinity of these antibodies that were dependent on the selection of the secondary detection antibody used.  相似文献   

5.
To define the structures within the insulin receptor (IR) that are required for high affinity ligand binding, we have used IR fragments consisting of four amino-terminal domains (L1, cysteine-rich, L2, first fibronectin type III domain) fused to sequences encoded by exon 10 (including the carboxyl terminus of the alpha-subunit). The fragments contained one or both cysteine residues (amino acids 524 and 682) that form disulfides between alpha-subunits in native IR. A dimeric fragment designated IR593.CT (amino acids 1-593 and 704-719) bound (125)I-insulin with high affinity comparable to detergent-solubilized wild type IR and mIR.Fn0/Ex10 (amino acids 1-601 and 650-719) and greater than that of dimeric mIR.Fn0 (amino acids 1-601 and 704-719) and monomeric IR473.CT (amino acids 1-473 and 704-719). However, neither IR593.CT nor mIR.Fn0 exhibited negative cooperativity (a feature characteristic of the native insulin receptor and mIR.Fn0/Ex10), as shown by failure of unlabeled insulin to accelerate dissociation of bound (125)I-insulin. Anti-receptor monoclonal antibodies that recognize epitopes in the first fibronectin type III domain (amino acids 471-593) and inhibit insulin binding to wild type IR inhibited insulin binding to mIR.Fn0/Ex10 but not IR593.CT or mIR.Fn0. We conclude the following: 1) precise positioning of the carboxyl-terminal sequence can be a critical determinant of binding affinity; 2) dimerization via the first fibronectin domain alone can contribute to high affinity ligand binding; and 3) the second dimerization domain encoded by exon 10 is required for ligand cooperativity and modulation by antibodies.  相似文献   

6.
To investigate conformations of C-cadherin associated with functional activity and physiological regulation, we generated monoclonal antibodies (mAbs) that bind differentially to monomeric or dimeric forms. These mAbs recognize conformational epitopes at multiple sites along the C-cadherin ectodomain aside from the well known Trp-2-mediated dimer interface in the N-terminal EC1 domain. Group 1 mAbs, which bind monomer better than dimer and the Trp-2-mutated protein (W2A) better than wild type, recognize epitopes in EC4 or EC5. Dimerization of the W2A mutant protein via a C-terminal immunoglobulin Fc domain restored the dimeric mAb-binding properties to EC4-5 and partial homophilic binding activity but did not restore full cell adhesion activity. Group 2 and Group 3 mAbs, which bind dimer better than monomer and wild type better than W2A, recognize epitopes in EC1 and the interface between EC1 and EC2, respectively. None of the mAbs could distinguish between different physiological states of C-cadherin at the cell surface of either Xenopus embryonic cells or Colo 205 cultured cells, demonstrating that changes in dimerization do not underlie regulation of adhesion activity. On the cell surface the EC3-EC5 domains are much less accessible to mAb binding than EC1-EC2, suggesting that they are masked by the state of cadherin organization or by other molecules. Thus, the EC2-EC5 domains either reflect, or are involved in, cadherin dimerization and organization at the cell surface.  相似文献   

7.
In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the “knob-into-hole” technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.  相似文献   

8.
The knowledge of the structure function relationship of the allergen is essential to design allergenic variants with reduced IgE binding capacity but intact T cell reactivity. Asp f 2 is a major allergen from the fungus Aspergillus fumigatus and >90% of A. fumigatus-sensitized individuals displayed IgE binding to Asp f 2. In the present study, we evaluated the involvement of C-terminal cysteine residues in IgE binding conformation of Asp f 2. The deletion mutants were constructed by adding three C-terminal cysteines of the native Asp f 2 one at a time to the non-IgE binding Asp f 2 (68-203). The point mutants of Asp f 2 (68-268) with C204A and C257A substitutions were constructed to study the role of C-terminal cysteines in IgE binding. Immunological evaluation of reduced and alkylated Asp f 2 and its mutants were conducted to determine the contribution of free sulfhydryl groups as well as the disulfide bonds in allergen Ab interaction. Four-fold increase in IgE Ab binding of Asp f 2 (68-267) compared with Asp f 2 (68-266) and complete loss in IgE binding of C204A mutant of Asp f 2 (68-268) indicate the involvement of C(204) and C(267) in IgE binding conformation of Asp f 2. A significant reduction in IgE binding of wild and mutated Asp f 2 after reduction and alkylation emphasizes the importance of cysteine disulfide bonds in epitope Ab interaction. The hypoallergenic variants may be explored further to develop safe immunotherapeutic strategy for allergic disorders.  相似文献   

9.
Traditionally, the function of immunoglobulins A (IgA), the major type of secreted antibodies, has been thought to be restricted to binding antigens outside the epithelium basal membrane. Therefore, effector mechanisms eliminating IgA-opsonized targets have not been investigated so far. However, some indirect observations of infectious agents penetrating into tissues and blood from the environment suggest such mechanisms (analogous to IgG/IgM-dependent activation of complement and natural killers). In the present review, we examine details of IgA structure that might contribute to elucidation of IgA-dependent effector functions in human and animal immunity. Special attention is given to a putative transduction of signal about antigen binding in the active center of IgA from the Fab- to the Fc-superdomain via intramolecular conformational rearrangements. Different structure of the IgA subclasses (IgA1 and IgA2) is examined taking into account probable divergence of their functions in immune response.  相似文献   

10.
The acid- and thermostable Sac7d is a small, non-specific DNA-binding protein of the hyperthermophile archaea Sulfolobus acidocaldarius. In this study, Sac7d was employed as a structural unit in the design of a thermostable protein containing two putative DNA-binding domains. By linking two Sac7d proteins together and comparing the DNA interaction of dimer to that of monomer, this study may provide structural insights into other dimeric DNA-binding proteins. The engineered protein, Sac7dK66C, was over-expressed and purified. Dimeric Sac7d was obtained by cross-linking two mutant Sac7d molecules through the C-terminal disulfide bond. Thermal stability and DNA-binding ability of dimeric Sac7d were assessed and compared to those of wild type Sac7d by gel retardation assay, circular dichroism spectroscopy, and crystallization experiments. Dimeric Sac7d was shown to be equally thermostable as wild type, and its ability to stabilize DNA duplex is the same as wild type. However, the interaction of dimeric Sac7d with DNA diverged from that of wild type, suggesting different DNA-binding modes for dimeric Sac7d. In addition, a large difference in extinction coefficient was observed in all dimer/DNA CD spectra, which was reminiscent of the spectrum of Psi-DNA. Conjugation of various chemical groups to mutant Sac7d is possible through the C-terminal thiol group. This offers a possible approach in the design of a thermostable biomolecule with novel functions.  相似文献   

11.
Abstract

The acid- and thermostable Sac7d is a small, non-specific DNA-binding protein of the hyperthermophile archaea Sulfolobus acidocaldarius. In this study, Sac7d was employed as a structural unit in the design of a thermostable protein containing two putative DNA-binding domains. By linking two Sac7d proteins together and comparing the DNA interaction of dimer to that of monomer, this study may provide structural insights into other dimeric DNA-binding proteins. The engineered protein, Sac7dK66C, was over-expressed and purified. Dimeric Sac7d was obtained by cross-linking two mutant Sac7d molecules through the C-terminal disulfide bond. Thermal stability and DNA-binding ability of dimeric Sac7d were assessed and compared to those of wild type Sac7d by gel retardation assay, circular dichroism spectroscopy, and crystallization experiments. Dimeric Sac7d was shown to be equally thermostable as wild type, and its ability to stabilize DNA duplex is the same as wild type. However, the interaction of dimeric Sac7d with DNA diverged from that of wild type, suggesting different DNA-binding modes for dimeric Sac7d. In addition, a large difference in extinction coefficient was observed in all dimer/DNA CD spectra, which was reminiscent of the spectrum of ψ-DNA. Conjugation of various chemical groups to mutant Sac7d is possible through the C-terminal thiol group. This offers a possible approach in the design of a thermostable biomolecule with novel functions.  相似文献   

12.
Monoclonal antibodies have become a mainstay for the targeted treatment of cancer today. Some of the most successful targets of monoclonal antibodies are constituted by the epidermal growth factor receptor family spearheaded by the epidermal growth factor receptor (EGFR). Prompted by studies indicating that IgE compared to IgG may harness alternate effector functions to eradicate malignant cells, we addressed the establishment, engineering, and the potential tumoricidal effects of recombinant anti-EGFR IgE. Therefore, two different therapeutic EGFR-specific antibodies, 225 and 425, were chosen for re-cloning into different chimeric IgE and IgG formats and produced in human cells. Simultaneous antibody binding to the sEGFR demonstrated accessibility of both epitopes for recombinant IgE. Proliferation and cytotoxicity assays demonstrated signal blocking and effector mediating capability of IgE isotypes. Pronounced degranulation in the presence of sEGFR upon activation exclusively with two IgE antibodies verified the epitope proximity and provides evidence that tumor-targeting by anti-EGFR IgE is safe with regard to soluble target structures. Degranulation mediated by tumor cells expressing EGFR could be demonstrated for singular and combined IgE antibodies; however, use of two IgE specificities was not superior to use of one IgE alone. The data suggest that the surface distribution of EGFR is optimally suited to mount a robust effector cell trigger and corroborate the potential and specificity of the IgE/IgE receptor network to react to xenobiotic or pathogenic patterns for targeting malignancies.  相似文献   

13.
The Fcalpha/mu receptor (Fcα/μR), a type I transmembrane protein, is an immunoglobulin Fc receptor for both IgA and IgM. Its functions in immune defense are not clear at present. In this work, human Fcα/μR was expressed in CHO, 293T, and COS-7 cells to study its biochemical functions. Fcα/μR expressed by CHO and 293T was only in monomer form in cytoplasma and the monomeric receptor could not bind IgA or IgM. In comparison, Fcα/μR expressed by COS-7 cells had both monomer and dimer forms. The binding assay showed that Fcα/μR expressed by COS-7 cells could bind IgM strongly and IgA weakly, implying that dimeric receptor could be expressed on cell membrane and functioned. The bound IgM could be internalized and the internalization was abolished when the cytoplasmic domain of Fcα/μR was truncated. Therefore, the cytoplasmic portion of human Fcα/μR is required in the internalization.  相似文献   

14.
Metastatic colorectal cancer (mCRC) is frequently characterized by the presence of mutations of the KRAS oncogene, which are generally associated with a poor response to treatment with anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies. With the methods currently used, a case is classified as KRAS-mutated when approximately 20% of the cells bear an activating KRAS mutation. These considerations raise the question of whether cells with a mutated KRAS can be found in mCRC cases classified as KRAS wild-type when more sensitive methods are used. In addition, the issue arises of whether these mCRC cases with low proportion of KRAS-mutated cells could account at least in part for the therapeutic failure of anti-EGFR therapies that occur in 40–60% of cases classified as KRAS wild type. In this study, we compared the classical assays with a very sensitive test, a locked nucleic acid (LNA) polymerase chain reaction (PCR), capable of detecting KRAS-mutated alleles at extremely low frequency (detection sensitivity limit 0.25% mutated DNA/wild-type DNA). By analyzing a cohort of 213 mCRC patients for KRAS mutations, we found a 20.6% discordance between the sequencing/TheraScreen methods and the LNA-PCR. Indeed, 44 mCRC patients initially considered KRAS wild type were reclassified as KRAS mutated by using the LNA-PCR test. These patients were more numerous among individuals displaying a clinical failure to anti-EGFR therapies. Failure to respond to these biological treatments occurred even in the absence of mutations in other EGFR pathway components such as BRAF.  相似文献   

15.
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
《MABS-AUSTIN》2013,5(4):743-751
Fc effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are crucial to the efficacy of many antibody therapeutics. In addition to IgG, antibodies of the IgA isotype can also promote cell killing through engagement of myeloid lineage cells via interactions between the IgA-Fc and FcαRI (CD89). Herein, we describe a unique, tandem IgG1/IgA2 antibody format in the context of a trastuzumab variable domain that exhibits enhanced ADCC and ADCP capabilities. The IgG1/IgA2 tandem Fc format retains IgG1 FcγR binding as well as FcRn-mediated serum persistence, yet is augmented with myeloid cell-mediated effector functions via FcαRI/IgA Fc interactions. In this work, we demonstrate anti-human epidermal growth factor receptor-2 antibodies with the unique tandem IgG1/IgA2 Fc can better recruit and engage cytotoxic polymorphonuclear (PMN) cells than either the parental IgG1 or IgA2. Pharmacokinetics of IgG1/IgA2 in BALB/c mice are similar to the parental IgG, and far surpass the poor serum persistence of IgA2. The IgG1/IgA2 format is expressed at similar levels and with similar thermal stability to IgG1, and can be purified via standard protein A chromatography. The tandem IgG1/IgA2 format could potentially augment IgG-based immunotherapeutics with enhanced PMN-mediated cytotoxicity while avoiding many of the problems associated with developing IgAs.  相似文献   

17.
目的:制备特异性抗人表皮生长因子受体(EGFR)的单链抗体(sc Fv),鉴定其生物学活性,为进一步研究基于单链抗体的免疫治疗奠定基础。方法:从分泌抗人EGFR单克隆抗体的杂交瘤细胞系提取总RNA,利用5'RACE技术扩增轻链和重链可变区(VL、VH)基因,构建具有VL、VH基因的单链抗体基因,并将构建的单链抗体基因克隆到真核细胞表达载体pc DNA3.1中进行表达和鉴定。ELISA鉴定单链抗体对抗原的特异性;Fortebio检测抗原抗体间的亲和力,流式细胞术检测单链抗体结合肺癌细胞系天然EGFR的功能活性。结果:获得唯一的轻重链可变区序列VL、VH,成功构建EGFR-sc Fv,特异性与天然EGFR蛋白结合,亲和力达3.22×10-9mol/L。结论:成功构建了抗人EGFR单链抗体,为肺癌免疫导向治疗研究奠定了基础。  相似文献   

18.
Epidermal growth factor receptor (EGFR) is one of the major molecular targets for cancer diagnosis and therapy. EGFR and EGFRvIII, mutated form of EGFR, have been identified as participating in pathogenesis of some forms of human cancers. Monoclonal antibodies (mAbs) targeting EGFR/EGFRvIII have been shown to suppress the signal transduction pathways controlling tumor cell growth, proliferation, and apoptosis. Until now, different types of mAbs or antibody fragments against EGFR family have been established. Some of these antibodies have been used clinically for treating various forms of human malignancies. More recently, a single domain antibody (sdAb) targeting this family of receptors has been introduced. The heavy chain antibodies (HCAbs) that made up variable regions of heavy chain, CH2, and CH3 domains are shown in camelids. SdAbs derived from camel HCAbs are the smallest known natural building parts for binding to antigen. They also possess a longer antigen recognizing region, which increases their capability for being more specific in target antigen enhancement. Camelid antibodies are highly valuable for their special characteristics, including heat resistance, small size, high solubility in an aqueous environment, and non-immunogenicity in a human environment. Due to these abilities, research on biotechnological production and treatment applications of recombinant smaller fragments of these only HCAbs is widely in progress. In this article, we will discuss the challenges and successes of different types of mAbs targeting EGFR/EGFRvIII in human cancer.  相似文献   

19.
Removal of asparagine (Asn)-linked carbohydrate chains from IgG antibody molecules reduces their antibody effector functions such as C activation and FcR binding. We have prepared IgG2a mAb with modified structure of carbohydrate chains by treating the hybridoma cells with swainsonine, which inhibits the processing of Asn-linked carbohydrate chains at the site of action of mannosidase II. These antibodies have obtained the capacity to bind lentil lectin and have become sensitive to endoglycosidase H digestion, indicating the structural changes of oligosaccharides from complex type to hybrid type. They behaved in an identical manner to the normal IgG2a antibodies with regards to extracellular secretion, Ag-binding capacity, C-mediated hemolysis and FcR-mediated functions. Critical moieties of Asn-linked carbohydrate chains on IgG molecules to retain their antibody effector functions were discussed.  相似文献   

20.
Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号