首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the successful testing of the immunosuppressive effects of cyclosporine in transplant patients in 1978, the field of organ transplants began an exponential growth. With that, the field of organ preservation became increasingly important as the need to increase preservation time and improve graft function became paramount. However, for every patient that receives a transplanted organ, there are four more on the waiting list. In addition, a patient dies from the lack of a transplant almost every 1½ hour. To alleviate this donor crisis, there is a need to expand the donor pool to marginal donor organs. The main reason these organs are underutilized is because the current method of static preservation, simple cold storage, is ineffective. This article will provide a general review of the methods of preservation including simple cold storage, hypothermic machine perfusion, normothermic machine perfusion, and oxygen persufflation. In addition, the article will provide a review of how these dynamic preservation methods have improved the recovery and preservation of marginal donor organs including Donation after Cardiac Death and Fatty livers.  相似文献   

2.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation.These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past.In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved.This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.  相似文献   

3.
Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed.  相似文献   

4.
Although lung transplant remains the only option for patients suffering from end-stage lung failure, donor supply is insufficient to meet demand. Static cold preservation is the most common method to preserve lungs in transport to the recipient; however, this method does not improve lung quality and only allows for 8 h of storage. This results in lungs which become available for donation but cannot be used due to failure to meet physiologic criteria or an inability to store them for a sufficient time to find a suitable recipient. Therefore, lungs lost due to failure to meet physiological or compatibility criteria may be mitigated through preservation methods which improve lung function and storage durations. Ex situ lung perfusion (ESLP) is a recently developed method which allows for longer storage times and has been demonstrated to improve lung function such that rejected lungs can be accepted for donation. Although greater use of ESLP will help to improve donor lung utilization, the ability to cryopreserve lungs would allow for organ banking to better utilize donor lungs. However, lung cryopreservation research remains underrepresented in the literature despite its unique advantages for cryopreservation over other organs. Therefore, this review will discuss the current techniques for lung preservation, static cold preservation and ESLP, and provide a review of the cryopreservation challenges and advantages unique to lungs.  相似文献   

5.
The aim of the present study was to evaluate the potential benefit of machine preservation with the Belzer MPS or HTK solution, compared to standard cold storage, after procurement of marginal livers from non-heart beating donors in an experimental pilot study. Livers from male Wistar rats (250-300 g bw) were harvested after 60 min of cardiac arrest, flushed via the portal vein and cold stored submerged in HTK for 24 h at 4 degrees C while other organs were subjected to oxygenated machine perfusion with HTK or Belzer's MPS at 5 ml/min at 4 degrees C. Cold perfusion of livers with the non-colloidal HTK was not compromised by the lack of oncotic agents and there was no rise in vascular resistance during the 24 h of machine preservation with HTK or the colloidal Belzer MPS. Viability of the livers was assessed after the cold preservation period by warm reperfusion in vitro. Oxygenated machine perfusion was found to significantly increase viability of the livers vs simple cold storage with respect to portal vascular resistance upon reperfusion, enzyme release as well as functional recovery of oxygen utilization or bile production. Moreover, tissue antigen expression of ICAM-1 or histocompatibility antigen class II could be markedly reduced by oxygenated perfusion preservation as compared to cold storage. It is concluded that predamaged organs should preferably be preserved by oxygenated machine perfusion thus minimizing functional alterations and immunogenicity of the graft. In this setup HTK appeared equally effective as Belzer's MPS for machine preservation.  相似文献   

6.
7.

Objectives

Especially for preservation of marginal donor organs, machine perfusion (MP) and retrograde oxygen persufflation (ROP) are alternatives to cold storage (CS). Using a porcine kidney autotransplantation model we compared metabolic and morphologic effects of CS, ROP, and MP on kidneys exposed to warm ischemia.

Methods

Kidneys of 21 pigs were exposed in situ to warm ischemia for 60 min. The kidneys were randomly allocated to three experimental groups, each receiving a 4-h treatment of either cold storage, machine perfusion, or retrograde oxygen persufflation. Tissue samples were examined for malondialdehyde and histological changes. Daily blood samples were examined for creatinine levels.

Results

Seven days after transplantation, the plasma creatinine levels in the CS and MP groups were still significantly elevated above the baseline values. In the ROP group, all animals exhibited nearly normal creatinine levels. Malondialdehyde, an indicator of lipidperoxidation, was dramatically increased in the machine perfused kidneys on day 7, whereas the malondialdehyde levels in the other two groups were near normal values. The MP kidneys exhibited the most striking histological changes.

Conclusion

Though MP has been well introduced in organ transplantation, in our opinion, it must still be optimized and standardized. It is necessary to clarify questions such as whether there is a need for oxygenation during perfusion, the length of perfusion, the impact of pressure, and the effects of additional scavengers. The results of the present study suggest the reconsideration of the ROP-technique for the preservation of predamaged donor grafts especially of NHBD and further studies, comparing MP and ROP upon long term preservation are strongly encouraged.  相似文献   

8.

Background

Although non-heart-beating donors have the potential to increase the number of available organs, the livers are used very seldom because of the risk of primary non-function. There is evidence that machine perfusion is able to improve the preservation of marginal organs, and therefore we evaluated in our study the influence of the perfusate temperature during oxygenated machine perfusion on the graft quality.

Methods

Livers from male Wistar rats were harvested after 60-min warm ischemia induced by cardiac arrest. The portal vein was cannulated and the liver flushed with Lifor® (Lifeblood Medical, Inc.) organ preservation solution for oxygenated machine perfusion (MP) at 4, 12 or 21 °C. Other livers were flushed with HTK and stored at 4 °C by conventional cold storage (4 °C-CS). Furthermore two groups with either warm ischemic damage only or without any ischemic damage serve as control groups. After 6 h of either machine perfusion or cold storage all livers were normothermic reperfused with Krebs–Henseleit buffer, and functional as well as structural data were analyzed.

Results

Contrary to livers stored by static cold storage, machine perfused livers showed independently of the perfusate temperature a significantly decreased enzyme release of hepatic transaminases (ALT) during isolated reperfusion. Increasing the machine perfusion temperature to 21 °C resulted in a marked reduction of portal venous resistance and an increased bile production.

Conclusions

Oxygenated machine perfusion improves viability of livers after prolonged warm ischemic damage. Elevated perfusion temperature of 21 °C reconstitutes the hepatic functional capacity better than perfusion at 4 or 12 °C.  相似文献   

9.
In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.  相似文献   

10.
There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C.  相似文献   

11.

Background

Expanded criteria donors (ECDs) are currently accepted as potential sources to increase the donor pool and to provide more chances of kidney transplantation for elderly recipients who would not survive long waiting periods. Hypothermic machine perfusion (HMP) is designed to mitigate the deleterious effects of simple cold storage (CS) on the quality of preserved organs, particularly when the donor is in a marginal status.

Methods

We compared the transplant outcomes in patients receiving ECD kidneys with either HMP or CS graft preservation. Articles from the MEDLINE, EMBASE and Cochrane Library databases were searched and all studies reporting outcomes from HMP versus CS methods of kidney preservation were included in this meta-analysis. The parameters analyzed included the incidence of delayed graft function (DGF), primary non-function (PNF) and one-year graft and patient survival.

Results

A total of seven studies qualified for the review, involving 2374 and 8716 kidney grafts with HMP or CS preservation respectively, all from ECD donors. The incidence of delayed graft function (DGF) was significantly reduced with an odd ratio(OR) of 0.59 (95% CI 0.54–0.66, P<0.001) and one-year graft survival was significantly improved with an OR of 1.12 (95% CI 1.03–1.21, P = 0.005) in HMP preservation compared to CS. However, there was no difference in the incidence of PNF (OR 0.54, 95% CI 0.21–1.40, P = 0.20), and one-year patient survival (OR 0.98, 95% CI 0.94–1.02, P = 0.36) between HMP and CS preservation.

Conclusions

HMP was associated with a reduced incidence of DGF and an with increased one-year graft survival, but it was not associated with the incidence of PNF and one-year patient survival.  相似文献   

12.

Background

In response to the increased organ shortage, organs derived from donation after cardiac death (DCD) donors are becoming an acceptable option once again for clinical use in transplantation. However, transplant outcomes in cases where DCD organs are used are not as favorable as those from donation after brain death or living donors. Different methods of organ preservation are a key factor that may influence the outcomes of DCD kidney transplantation.

Methods

We compared the transplant outcomes in patients receiving DCD kidneys preserved by machine perfusion (MP) or by static cold storage (CS) preservation by conducting a meta-analysis. The MEDLINE, EMBASE and Cochrane Library databases were searched. All studies reporting outcomes for MP versus CS preserved DCD kidneys were further considered for inclusion in this meta-analysis. Odds ratios and 95% confidence intervals (CI) were calculated to compare the pooled data between groups that were transplanted with kidneys that were preserved by MP or CS.

Results

Four prospective, randomized, controlled trials, involving 175 MP and 176 CS preserved DCD kidney transplant recipients, were included. MP preserved DCD kidney transplant recipients had a decreased incidence of delayed graft function (DGF) with an odd ration of 0.56 (95% CI = 0.36–0.86, P = 0.008) compared to CS. However, no significant differences were seen between the two technologies in incidence of primary non-function, one year graft survival, or one year patient survival.

Conclusions

MP preservation of DCD kidneys is superior to CS in terms of reducing DGF rate post-transplant. However, primary non-function, one year graft survival, and one year patient survival were not affected by the use of MP or CS for preservation.  相似文献   

13.
Fuller BJ  Lee CY 《Cryobiology》2007,54(2):129-145
Hypothermic perfusion preservation (HPP) was an integral step in the development of early clinical transplantation programmes, and considerable progress was made in understanding the basic principles underlying the technique. In subsequent years, the development of better preservation solutions for cold hypoxic storage, along with pragmatic choices made on grounds of costs and logistics, saw a fall in the application of HPP. More recently, the acute shortage of suitable organ donors and the inevitable pressure to use organs from sub-optimal (or expanded criteria) donors, has forced a re-evaluation of HPP, and the development of a new generation of HPP machines and associated perfusion solutions. This review sets out the historical development of HPP across the range of organs in which the method was originally investigated, describes the biological benefits and drawbacks associated with HPP, and sets out the most recent literature on the topic (including comments on the interest in use of higher temperatures in organ perfusion).  相似文献   

14.
Hydroxyethyl starch (HES) is a common colloid in organ preservation solutions, such as in University of Wisconsin (UW) solution, for preventing graft interstitial edema and cell swelling during cold preservation of donor organs. However, HES has undesirable characteristics, such as high viscosity, causing kidney injury and aggregation of erythrocytes. Hyperbranched polyglycerol (HPG) is a branched compact polymer that has low intrinsic viscosity. This study investigated HPG (MW-0.5 to 119 kDa) as a potential alternative to HES for cold organ preservation. HPG was synthesized by ring-opening multibranching polymerization of glycidol. Both rat myocardiocytes and human endothelial cells were used as an in vitro model, and heart transplantation in mice as an in vivo model. Tissue damage or cell death was determined by both biochemical and histological analysis. HPG polymers were more compact with relatively low polydispersity index than HES in UW solution. Cold preservation of mouse hearts ex vivo in HPG solutions reduced organ damage in comparison to those in HES-based UW solution. Both size and concentration of HPGs contributed to the protection of the donor organs; 1 kDa HPG at 3 wt% solution was superior to HES-based UW solution and other HPGs. Heart transplants preserved with HPG solution (1 kDa, 3%) as compared with those with UW solution had a better functional recovery, less tissue injury and neutrophil infiltration in syngeneic recipients, and survived longer in allogeneic recipients. In cultured myocardiocytes or endothelial cells, significantly more cells survived after cold preservation with the HPG solution than those with the UW solution, which was positively correlated with the maintenance of intracellular adenosine triphosphate and cell membrane fluidity. In conclusion, HPG solution significantly enhanced the protection of hearts or cells during cold storage, suggesting that HPG is a promising colloid for the cold storage of donor organs and cells in transplantation.  相似文献   

15.
Understanding the mechanisms by which natural anti‐freeze proteins protect cells and tissues from cold could help to improve the availability of donor organs for transplantation.

The first successful organ transplant in humans was performed in 1954 by Joseph Murray, who used a patient’s twin as a kidney donor. Murrays’ breakthrough paved the way for organ transplantation and the number of transplanted organs has grown ever since. For example, in 2017, a total of 139.024 solid organs—mostly kidney, liver, heart, lung, pancreas, and small bowel—were transplanted (Fig 1A). But this number only reflects 10% of the worldwide need; many patients still die of end‐stage organ failure while on a waiting list. The limited number of donor organs contributes only partially to this shortage. Many donor organs are not transplanted eventually owing to inefficient preservation techniques that shorten their extracorporeal lifetime. In fact, the percentage of donor organs that are unused is estimated to range from around 25% for kidneys and livers up to 70–80% for hearts and lungs (Giwa et al, 2017); Fig 1B).Open in a separate windowFigure 1Organ transplantation and preservability statusStatistics show a positive correlation between the duration of ex vivo preservation and the number of organ transplants. Number of solid organs transplanted in 2017 (A). Percentage of organs failed to be transplanted (B). Duration of solid organ ex vivo preservation in static cold storage (C). Sources: Data from the Global Observatory on Donation and Transplantation and (Parsons et al, 2014), (Guibert et al, 2011) and (Editorial: Buying time for transplants (2017))
Many donor organs are not transplanted eventually owing to inefficient preservation techniques that shorten their extracorporeal lifetime.
To address the shortage of donor organs and decrease the number of organs that go to waste, biobanks could efficiently store viable tissues and organs until transplantation. Yet, the current standard for ex vivo preservation of donor organs is static cold storage (4–8°C) which, depending on the organ, ensures viable conservation for only some hours; hearts are typically viable for a maximum of only 4 h (Fig 1C). In addition, this approach leads to hypothermic damage and to ischemia/reperfusion injury.Hence, there is an urgent need for strategies that prolong the viable preservation of donor organs. Two main strategies have emerged for cryopreservation and subzero storage, both of which cool tissues below the freezing point. While subzero storage just below 0°C may suffice for short‐term preservation, cryopreservation at −80°C or even lower temperatures is required for long‐term storage in biobanks. A proof‐of‐principle study already demonstrated that subzero preservation extended the preservation of rat hearts up to 24 h after collection (Amir et al, 2004); cryopreservation of whole hearts is currently not possible. The main reason is that lowering the temperature below the freezing point of water leads to ice formation, which causes cell damage and destroys tissues. One of the main challenges in biomedical research for organ transplantation is therefore finding non‐toxic and biocompatible antifreeze compounds that enable subzero storage and cryopreservation without causing tissue damage. An additional benefit is a larger time window to perform evaluation in terms of organ size and human leukocyte antigens matching and preparing the recipient patient to increase the chance of a successful transplantation.  相似文献   

16.
BackgroundThere are currently two approaches to hypothermic preservation for most solid organs: static or dynamic. Cold storage is the main method used for static storage (SS), while hypothermic pulsatile perfusion (HPP) and other machine perfusion-based methods, such as normothermic machine perfusion and oxygen persufflation, are the methods used for dynamic preservation. HPP is currently approved for kidney transplantation.MethodsWe evaluated, for the first time, the feasibility of HPP on 11 human pancreases contraindicated for clinical transplantation because of advanced age and/or history of severe alcoholism and/or abnormal laboratory tests. Two pancreases were used as SS controls, pancreas splitting was performed on 2 other pancreases for SS and HPP and 7 pancreases were tested for HPP. HPP preservation lasted 24 h at 25 mmHg. Resistance index was continuously monitored and pancreas and duodenum histology was evaluated every 6 h.ResultsThe main finding was the complete absence of edema of the pancreas and duodenum at all time-points during HPP. Insulin, glucagon and somatostatin staining was normal. Resistance index decreased during the first 12 h and remained stable thereafter.Conclusion24 h hypothermic pulsatile perfusion of marginal human pancreas-duodenum organs was feasible with no deleterious parenchymal effect. These observations encourage us to further develop this technique and evaluate the safety of HPP after clinical transplantation.  相似文献   

17.
Viability of donor tissues is essential for the success of organ transplantation. Although much work has been done in the field of organ preservation, currently there are few objective methods for evaluating transplant organ viability, and thus preservation efficiency. In the field of cancer biology, single-cell gel electrophoresis (SCGE) is a technique commonly used to measure the efficacy of anti-tumor treatments by measuring the breakdown of tumor cell deoxyribonucleic acid (DNA). This assay has recently been applied to various organs from a postmortem porcine animal model, and cells were found to undergo postmortem breakdown in a way similar to apoptosis-induced DNA fragmentation. Collections of cells from each organ reached levels indicative of non-viability as the postmortem interval (PMI) progressed. The rates of cellular DNA degradation were found to be specific to each organ type at a given ambient temperature. We believe that following the application of various preservation techniques, SCGE assay has the potential to provide a clear indication of cell viability in an organ destined for transplant. As a readily available viability assay, this technique could provide transplant researchers with a useful tool to quantify the efficacy of their experimental organ preservation techniques.  相似文献   

18.
Current medical transplantation confronts major problems such as the shortage of donors and geographical restrictions that inhibit efficient utilization of finite donor organs within their storage lives. To overcome these issues, expanding organ preservation time has become a major concern. We investigated whether a strategy which best preserves organ grafts can be achieved by the use of a newly developed refrigerating chamber, which is capable of establishing a supercooled and unfrozen state stably by generating an electrostatic field in its inside. When adult rat organs such as heart, liver, and kidneys were stored in the supercooled conditions, the levels of major biochemical markers leaked from the preserved organs were significantly lower than in the ordinary hypothermic storage. No apparent tissue damages were observed histologically after the supercooled preservation. Our results suggest that the use of this supercooling refrigerator improves organ preservation and may provide an innovative technique for human organ transplantation.  相似文献   

19.
With over 110,000 patients waiting for organ transplantation, the current crisis in organ transplantation is based on a lack of donors after brain-death (DBD). A very large alternative pool of donor organs that remain untapped are the donors after cardiac death (DCD), recovered after cardiac activity has ceased and therefore sustained some ischemic injury. Machine perfusion has been proposed as a novel modality of organ preservation and treatment to render such cadaveric organs, and in particular livers, transplantable. Two key issues that remain unaddressed are how to assess whether a DCD liver is damaged beyond repair, and whether machine perfusion has rendered an injured organ sufficiently viable for transplantation. In this work, we present a metabolic analysis of the transient responses of cadaveric rat livers during normothermic machine perfusion (NMP), and develop an index of ischemia that enables evaluation of the organ ischemic injury level. Further, we perform a discriminant analysis to construct a classification algorithm with >0.98 specificity to identify whether a given perfused liver is ischemic or fresh, in effect a precursor for an index of transplantability and a basis for the use of statistical process control measures for automated feedback control of treatment of ischemic injury in DCD livers. The analyses yield an index based on squared prediction error (SPE) as log(SPE) >1.35 indicating ischemia. The differences between metabolic functions of fresh and ischemic livers during perfusion are outlined and the metabolites that varied significantly for ischemic livers are identified as ornithine, arginine, albumin and tyrosine.  相似文献   

20.
Organ and tissue transplant is now the treatment of choice for many end stage diseases. In the recent years, there has been an increasing demand for organs but not a similar increase in the supply leading to a severe shortage of organs for transplant resulted in increasing wait times for recipients. This has resulted in expanded donor criteria to include older donors and donors with mild disease. In spite of implementation of more stringent criteria for donor selection, there continues to be some risk of donor derived malignancy. Malignancy after transplantation can occur in three different ways: (a) de-novo occurrence, (b) recurrence of malignancy, and (c) donor-related malignancy. Donor related malignancy can be either due to direct transmission of tumor or due to tumor arising in cells of donor origin. We will review donor related malignancies following solid organ transplantation and hematopoeitic progenitor cell transplantation. Further, we will briefly review the methods for detection and management of these donor related malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号