首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article discusses the preparation of novel Paper-PEG interpenetrating polymer network-based membranes as inexpensive alternative to currently available adsorptive membranes. The Paper-PEG membranes were developed for carrying out hydrophobic interaction membrane chromatography (HIMC). PEG is normally very hydrophilic but can undergo phase separation and become hydrophobic in the presence of high antichaotropic salt concentrations. Two variants of the Paper-PEG membranes, Paper-PEG 1 and Paper-PEG 2 were prepared by grafting different amounts of the polymer on filter paper and these were tested for their hydraulic properties and antibody binding capacity. The better of the two membranes (Paper-PEG 1) was then used for purifying the monoclonal antibody hIgG1-CD4 from simulated mammalian cell culture supernatant. The processing conditions required for purification were systematically optimized. The dynamic antibody binding capacity of the Paper-PEG 1 membrane was about 9 mg/mL of bed volume. A single step membrane chromatographic process using Paper-PEG 1 membrane gave high monoclonal antibody purity and recovery. The hydraulic permeability of the paper-based membrane was high and was maintained even after many runs, indicating that membrane fouling was negligible and the membrane was largely incompressible.  相似文献   

2.
3.
Isolation and characterization of monoclonal antibody (mAb) variants to understand the impact of their structure on function is a typical activity during early-stage candidate selection that contributes to derisking clinical development. In particular, efforts are devoted to characterizing oligomeric variants, owing to their potential immunogenic nature. We report here a mAb variant consisting of a canonical mAb monomer associated in a non-covalent fashion with an antigen-binding fragment (Fab) arm amputated from its Fc domain. The truncated heavy chain is encoded in the cell line genome and is the likely product of a genomic recombination during cell line generation. The addition of the Fab arm results in severe loss of potency, indicating its interaction with the Fab domain of the monomer. The presence of such a variant can easily be mitigated by an adequate purification step.  相似文献   

4.
Size exclusion chromatography (SEC) is the most commonly used method to separate and quantify monoclonal antibody (mAb) size variants. MAb-A is an IgG1 subtype humanized monoclonal antibody recombinantly produced in Chinese hamster ovary (CHO) cells. SEC analysis of MAb-A resolved a peak, named Peak 1, which elutes between monomer and dimer peaks. MAb-A lots produced from different clones and production scales all have 0.2–0.3% of SEC Peak 1. Electron spray ionization—time of flight mass spectrometry (ESI-TOF MS), microfluidics capillary electrophoresis and sodium dodecyl sulfate-PAGE (SDS PAGE) results demonstrated that SEC Peak 1 contains two structural variants: MAb-A with one extra light chain (2H3L) and MAb-A with two extra light chains (2H4L). The C-terminal Cys of the extra light chain in Peak 1 variants is either a free thiol, capped by glutathione, cysteine, or another light chain. Both electrophoresis and LC/MS analyses of non-reduced and reduced samples suggested that the extra light chains are linked to the MAb-A light chain through disulfide bonds. Isolated SEC Peak 1 fraction had a potency of 50% relative to MAb-A reference material. The 50% potency loss may result from the reduced accessibility to the antigen-binding site caused by the extra light chain(s)’ steric hindrance.  相似文献   

5.
免疫球蛋白是机体固有免疫系统的组成部分,是机体防御的第一道防线。本研究对抗鹅免疫球蛋白轻链单克隆抗体进行了特征分析并将其应用到不同免疫试验中用以检测鹅免疫球蛋白。用此单克隆抗体制备的免疫亲和层析柱用以分离血清中的鹅免疫球蛋白;偶联辣根过氧化物酶 (Horseradish peroxidase,HRP) 后的单克隆抗体用作第二抗体来检测鹅特异性抗体。此外,该单克隆抗体可以识别和定位外周血淋巴细胞中的SIg+淋巴细胞。研究表明,该单克隆抗体可在多种条件下检测或分离鹅免疫球蛋白并作为研究鹅体液免疫的有力工具。  相似文献   

6.
Isomerization of a monoclonal antibody is one of the common routes of protein degradation. An isomerization in the complementarity‐determining region (CDR) was found previously and is investigated in depth in this work. Affinity analysis proves that the antibody with one isomerized heavy chain has lower binding. Binding constants were determined, and exhibited a slower on‐rate in conjunction with a faster off‐rate for this isomerization. To determine the role of the buffer on the rate of isomerization, this antibody was incubated in various matrices and the amount of isomerized antibody was determined by hydrophobic interaction chromatography (HIC). The rate was found to be dependent on the pH as well as the net negative charge of the buffer components that can act as proton acceptors. An Arrhenius plot was performed to predict the levels of isomerization and a comparison of real samples proved the model was correct. This work affirms that isomerization in the CDR of a therapeutic antibody is important to monitor and the formulation buffer plays a significant role in the rate of the isomerization. Biotechnol. Bioeng. 2010; 105: 515–523. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

8.
《MABS-AUSTIN》2013,5(3):553-561
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

9.
10.
A syngeneic monoclonal idiotypic antibody was prepared by immunizing the sequence peptide of complementary determining region-1 (CDRL-1) of 41S-2-L which is an antibody light chain capable of catalytically decomposing the antigen peptide (gp41 peptide:original antigen) as well as the intact gp41 molecule of HIV-1 envelope. The obtained idiotypic antibody, i41SL1-2, showed a high specificity to the CDRL-1 peptide. The intact i41SL1-2 and its heavy and light chains displayed apparent affinity constants to the CDRL-1 peptide of 3.6 × 109, 2.7 × 107, 1.8 × 106/M, respectively. The i41SL1-2 recognized the artificial molecule CA2, which has a more complex steric conformation than the CDRL-1, while the i41SL1-2 showed very low affinity to the original monoclonal antibody 41S-2 and its light chain 41S-2-L. However, a homologous sequence, EGG-D, with the gp41 peptide was expressed in the complementary determining region-3 (CDRH-3) of the heavy chain of i41SL1-2. Furthermore, the consensus sequence EGG was located at the important position of the CDRH-3 loop of i41SL1-2. Although the sequence of CDRL-1 (16 mer) is quite shorter than that of whole light chain (112 mer), the CDRL-1 could induce the rearrangement of CDRH-3 gene of i41SL1-2 so as to express a homologous sequence with the original antigen.  相似文献   

11.
The concept of design space has been taking root under the quality by design paradigm as a foundation of in‐process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot‐to‐lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi‐dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high‐molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality. Biotechnol. Bioeng. 2010;107: 985–997. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
We present improvements on a previously reported method (Vernille JP, Schneider JW. 2004. Biotechnol Prog 20(6):1776-1782) to purify DNA oligomers by attachment of peptide nucleic acid amphiphiles (PNAA) to particular sequences on the oligomers, followed by their separation from unbound oligomers using hydrophobic interaction chromatography (HIC). Use of alkyl-modified HIC media (butyl and octyl sepharose) over phenyl-modified media (phenyl sepharose) reduced the elution time of unbound DNA while not affecting the elution time of the PNAA/DNA complex. Modifying the alkane tail length for PNAA from C(12) to C(18) increased slightly the retention of PNAA/DNA duplexes. By combining these two refinements, we show that sequence-specific purifications of DNA oligomers 60 bases in length or more can be achieved with high resolution, even when the PNAA alkane is attached to the center of the target strand. The insensitivity of the PNAA/DNA duplex binding to choice of HIC media appears to be due to a surface-induced aggregation phenomenon that does not occur in the case of untagged DNA. We also report on the use of batch HIC as an adequate predictor of elution profiles in linear gradient HIC, and its potential to considerably reduce purification times by applying step gradients.  相似文献   

13.
Partitioning of a macromolecule into the interfacial volume occupied by a grafted polymer brush decreases the configurational entropy (DeltaSbrush(c)) of the terminally attached linear polymer chains due to a loss of free volume. Self-consistent field theory (SCF) calculations are used to show that DeltaSbrush(c) is a strong function of both the size (MWp) of the partitioning macromolecule and the depth of penetration into the brush volume. We further demonstrate that the strong dependence of DeltaSbrush(c) on MWp provides a novel and powerful platform, which we call entropic interaction chromatography (EIC), for efficiently separating mixtures of proteins on the basis of size. Two EIC columns, differing primarily in polymer grafting density, were prepared by growing a brush of poly(methoxyethyl acrylamide) chains on the surface of a wide-pore (1,000-A pores, 64-microm diameter rigid beads) resin (Toyopearl AF-650M) bearing surface aldehyde groups. Semipreparative 0.1-L columns packed with either EIC resin provide reduced-plate heights of 2 or less for efficient separation of globular protein mixtures over at least three molecular-weight decades. Protein partitioning within these wide-pore EIC columns is shown to be effectively modeled as a thermodynamically controlled process, allowing partition coefficients (K(P)) and elution chromatograms to be accurately predicted using a column model that combines SCF calculation of K(P) values with an equilibrium-dispersion type model of solute transport through the column. This model is used to explore the dependence of column separation efficiency on brush properties, predicting that optimal separation of proteins over a broad MWp range is achieved at low to moderate grafting densities and intermediate chain lengths.  相似文献   

14.
In this report we describe the isolation and characterization of a monoclonal antibody against human serum transferrin (Tf) and the cloning and sequencing of its cDNA. The antibody competes with the transferrin receptor (TR) for binding to human Tf and is therefore expected to bind at or very close to a region of interaction between Tf and its receptor. From the deduced amino acid sequence, we constructed a 3-dimensional model of the variable domains of the antibody based on the canonical structure model for the hypervariable loops. The proposed structure of the antibody is a first step toward a more detailed characterization of the antibody-Tf complex and possibly toward a better understanding of the Tf interaction with its receptor. The model might prove useful in guiding site-directed mutagenesis studies, simplifying the experimental elucidation of the antibody structure, and in the use of automatic procedures to dock the interacting molecules as soon as structural information about the structure of the human Tf molecule will be available.  相似文献   

15.
Membrane chromatography has already proven to be a powerful alternative to polishing columns in flow‐through mode for contaminant removal. As flow‐through utilization has expanded, membrane chromatography applications have included the capturing of large molecules, including proteins such as IgGs. Such bind‐and‐elute applications imply the demand for high binding capacity and larger membrane surface areas as compared to flow‐through applications. Given these considerations, a new Sartobind Phenyl? membrane adsorber was developed for large‐scale purification of biomolecules based on hydrophobic interaction chromatography (HIC) principles. The new hydrophobic membrane adsorber combines the advantages of membrane chromatography—virtually no diffusion limitation and shorter processing time—with high binding capacity for proteins comparable to that of conventional HIC resins as well as excellent resolution. Results from these studies confirmed the capability of HIC membrane adsorber to purify therapeutic proteins with high dynamic binding capacities in the range of 20 mg‐MAb/cm3‐membrane and excellent impurity reduction. In addition the HIC phenyl membrane adsorber can operate at five‐ to ten‐fold lower residence time when compared to column chromatography. A bind/elute purification step using the HIC membrane adsorber was developed for a recombinant monoclonal antibody produced using the PER.C6® cell line. Loading and elution conditions were optimized using statistical design of experiments. Scale‐up is further discussed, and the performance of the membrane adsorber is compared to a traditional HIC resin used in column chromatography. Biotechnol. Bioeng. 2010; 105: 296–305. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
Exosomes are membrane-secreted vesicles, with sizes ranging from 30 to 150 nm, which play key roles in intercellular communication. There is intense interest in developing methods to isolate and quantify exosomes toward clinical diagnostics, fundamental studies of intercellular processes, and use of exosomes as delivery vehicles for therapeutic agents. Current methods for exosomes isolation and quantification are time consuming and have operational high costs; few combine isolation and quantification into a singular operation unit. This report describes the use of hydrophobic interaction chromatography on a polyester capillary-channeled polymer fiber column, employing a step gradient for exosome elution, including use of glycerol as a solvent modifier. The entire procedure is completed in 8 min, while maintaining the structural integrity and biological activity of the isolated exosomes. Electron microscopy was used to verify the size and structural fidelity of single exosomes. Absorbance response curves for a commercial exosome sample were used for exosome quantification in the chromatographic separations. In order to determine the dynamic loading capacity for exosomes, different volumes of Dictyostelium discoideum cell culture milieu supernatant were loaded at different column lengths (5–30 cm) and loading flow rates (0.2–0.5 ml/min). A loading capacity of 5.4 × 1012 exosomes derived from D. discoideum milieu was obtained on a 0.8 × 300 mm column; yielding recoveries of over 80%. It is believed that this isolation and purification strategy holds many advantages toward the use of exosomes across a wide breadth of medical and biotechnology applications.  相似文献   

17.
In the purification of monoclonal antibodies, ion-exchange chromatography is typically used among the polishing steps to reduce the amount of product-related impurities such as aggregates and fragments, whilst simultaneously reducing HCP, residual Protein A and potential toxins and viruses. When the product-related impurities are difficult to separate from the products, the optimization of these chromatographic steps can be complex and laborious. In this paper, we optimize the polishing chromatography of a monoclonal antibody from a challenging ternary feed mixture by introducing a hybrid approach of the simplex method and a form of local optimization. To maximize the productivity of this preparative bind-and-elute cation-exchange chromatography, wide ranges of the three critical operational parameters—column loading, the initial salt concentration, and gradient slope—had to be considered. The hybrid optimization approach is shown to be extremely effective in dealing with this complex separation that was subject to multiple constraints based on yield, purity, and product breakthrough. Furthermore, it enabled the generation of a large knowledge space that was subsequently used to study the sensitivity of the objective function. Increased design space understanding was gained through the application of Monte Carlo simulations. Hence, this work proposes a powerful hybrid optimization method, applied to an industrially relevant process development challenge. The properties of this approach and the results and insights gained, make it perfectly suited for the rapid development of biotechnological unit operations during early-stage bioprocess development.  相似文献   

18.
During cationic bed adsorption (EBA), with cutinase with varying length tryptophan tags (WP)(2)and (WP)(4), 33% and 10% of adsorption capacity and 80% and 32% eluted specific activity were observed in relation to wild type (wt)-cutinase in the conventional process. Therefore, as the hydrophobicity of the protein increases, it is important to integrate the EBA step with a hydrophobic interaction chromatography (HIC) process. As the length of the hydrophobic tag-(WP) increases from n = 2 to n = 4, the purification factor obtained by HIC was 1.8 and 2.2-fold higher than wt-cutinase. However, the recovery yield obtained in HIC decreases substantially as the length of hydrophobic tag increases (97%, 84% and 70% for wt-cutinase, cutinase-(WP)(2) and cutinase-(WP)(4)). The integration of two purification steps, EBA followed by HIC, resulted in the highest overall purity level for cutinase-(WP)(2), and the highest overall recovery yield for wt-cutinase. When optimizing the design of a hydrophobic tag fused to a protein secreted by Saccharomyces cerevisiae it must be considered that the cultivation parameters could impair the downstream process, and consequently the optimum tag is not necessarily the one that presents the highest purification factor in HIC.  相似文献   

19.
20.
In a recent work (Werner A and Hasse H in J Chromatogr A 2013;1315:135) the influence of mixed electrolytes on the adsorption of the macromolecules lysozyme, PEG and di‐PEGylated lysozyme on a hydrophobic resin has been studied, but only at one overall ionic strength (3000 mM). The present work, therefore, extends these studies to other ionic strengths (2400 and 2700 mM), and explores the application of a model to predict the entire data set. The adsorbent is Toyopearl PPG‐600M. The solvent is a 25 mM aqueous sodium phosphate buffer at pH 7.0. The studied salts are sodium chloride, sodium sulfate, ammonium chloride and ammonium sulfate. Pure salts as well as binary and ternary mixtures of these salts with varying ratios of the amounts of the salts are studied at 25 °C. The loading of the adsorbent increases with increasing salt concentration for all macromolecules. Synergetic effects of the mixed electrolytes are observed. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1104–1115, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号