首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders.In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy.  相似文献   

2.
This study was undertaken to explore the role of complement regulatory proteins (CRPs) in experimental autoimmune anterior uveitis (EAAU). We observed that the levels of CRPs, Crry and CD59, in the eyes of Lewis rats increased during EAAU and remained elevated when the disease resolved. The in vivo role of these CRPs in EAAU was explored using neutralizing mAbs, antisense oligodeoxynucleotides (AS-ODNs), and small interfering RNAs against rat Crry and CD59. Suppression of Crry in vivo at days 9, 14, or 19 by neutralizing mAb or AS-ODNs resulted in the early onset of disease, the exacerbation of intraocular inflammation, and delayed resolution. Suppression of CD59 was only effective when the Abs and ODNs were given before the onset of disease. The most profound effect on the disease was observed when a mixture of Crry and CD59 mAbs or AS-ODNs was administered. A similar effect was observed with a combination of Crry and CD59 small interfering RNA. There was no permanent histologic damage to ocular tissue after the inflammation cleared in these animals. Increased complement activation as determined by increased deposition of C3, C3 activation fragments, and membrane attack complex was observed in the eyes of Lewis rats when the function and/or expression of Crry and CD59 was suppressed. Thus, our results suggest that various ocular tissues up-regulate the expression of Crry and CD59 to avoid self-injury during autoimmune uveitis and that these CRPs play an active role in the resolution of EAAU by down-regulating complement activation in vivo.  相似文献   

3.
Stable antibody expression at therapeutic levels using the 2A peptide   总被引:2,自引:0,他引:2  
Therapeutic monoclonal antibodies (mAbs) are currently being developed for the treatment of cancer and other diseases. Despite clinical success, widespread application of mAb therapies may be limited by manufacturing capabilities. In this paper, we describe a mAb delivery system that allows continuous production of a full-length antibody at high-concentrations in vivo after gene transfer. The mAb is expressed from a single open reading frame by linking the heavy and light chains with a 2A self-processing peptide derived from the foot-and-mouth disease virus. Using this expression system, we generated a recombinant adeno-associated virus vector encoding the VEGFR2-neutralizing mAb DC101 (rAAV8-DC101). A single dose of rAAV8-DC101 resulted in long-term expression of >1,000 microg/ml of DC101 in mice, demonstrating significant anti-tumor efficacy. This report describes the first feasible gene therapy approach for stable delivery of mAbs at therapeutic levels, which may serve as an attractive alternative to direct injection of mAbs.  相似文献   

4.
The general feasibility of chimerization of monoclonal antibodies (mAbs) has already been shown for a large number of them. In order to evaluate in vitro parameters relevant to immunosuppressive therapy, we have chimerized and synthesized two anti-CD4 mAbs recognizing two different epitopes on the human T-lymphocyte antigen, CD4. The chimerized mAbs are produced at levels corresponding to those of the original hybridoma cell lines. With respect to activation of human complement, the individual Abs are negative; however, when used in combination, complement activation was performed. When applied in combination, they were found to modulate the CD4 antigen, whereas the individual mAb do not display this property. Individually they mediate an up to 60% inhibition of the mixed lymphocyte reaction (MLR). However, by combination of an anti-CD4 mAb with one directed against the alpha-chain of the human IL2 receptor, nearly 100% inhibition of the MLR was achieved, even with reduced dosage of the mAbs. Our data suggest that the combination of an anti-CD4 mAb and an anti-IL2R alpha chain mAb is more effective with respect to immunosuppression than each mAb by itself, indicating that this mAb cocktail could be a new strategy for immunosuppressive therapy.  相似文献   

5.
CD27 plays an important role in T-cell co-stimulation and is also expressed on lymphomas. In the present study, we generated novel depleting and non-depleting monoclonal antibodies (mAbs) against mouse CD27 and characterized their co-stimulatory activity in vitro and anti-tumor effects in immune-competent mice bearing syngeneic T-cell lymphoma (EG7) expressing or lacking CD27. A profound anti-tumor effect was observed with a non-depleting mAb (RM27-3E5), but not with a depleting mAb (RM27-3C1), against either EG7/CD27(+) or EG7/CD27(−) tumors, which was associated with the induction of EG7-specific cytotoxic T lymphocytes (CTLs). Consistently, the anti-tumor effect of RM27-3E5 was abolished in T cell-deficient nude mice. These results indicate that a non-depleting agonistic mAb against CD27 is promising for cancer therapy by co-stimulating tumor-specific CTL induction.  相似文献   

6.
《MABS-AUSTIN》2013,5(1):34-46
Monoclonal antibodies (mAb) have become a mainstay in tumor therapy. Clinical responses to mAb therapy, however, are far from optimal, with many patients presenting native or acquired resistance or suboptimal responses to a mAb therapy. MAbs exert antitumor activity through different mechanisms of action and we propose here a classification of these mechanisms. In many cases mAbs need to interact with immune cells to exert antitumor activity. We summarize evidence showing that interactions between mAbs and immune cells may be inadequate for optimal antitumor activity. This may be due to insufficient tumor accumulation of mAbs or immune cells, or to low-affinity interactions between these components. The possibilities to improve tumor accumulation of mAbs and immune cells, and to improve the affinity of the interactions between these components are reviewed. We also discuss future directions of research that might further improve the therapeutic efficacy of antitumor mAbs.  相似文献   

7.
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.  相似文献   

8.
《MABS-AUSTIN》2013,5(5):1124-1132
Monoclonal antibody (mAb)-based treatment of cancer has a significant effect on current practice in medical oncology, and is considered now as one of the most successful therapeutic strategies for cancer treatment. MAbs are designed to initiate or enhance anti-tumor immune responses, which can be achieved by either blocking inhibitory immune checkpoint molecules or triggering activating receptors. TIM gene family members are type-I surface molecules expressed in immune cells, and play important roles in the regulation of both innate and adaptive arms of the immune system. Therapeutic strategies based on anti-TIMs mAbs have shown promising results in experimental tumor models, and synergistic combinations of anti-TIMs mAbs with cancer vaccines, adoptive T-cell therapy, radiotherapy and chemotherapy will have great impact on cancer treatment in future clinical development.  相似文献   

9.
Monoclonal antibody (mAb)-based treatment of cancer has a significant effect on current practice in medical oncology, and is considered now as one of the most successful therapeutic strategies for cancer treatment. MAbs are designed to initiate or enhance anti-tumor immune responses, which can be achieved by either blocking inhibitory immune checkpoint molecules or triggering activating receptors. TIM gene family members are type-I surface molecules expressed in immune cells, and play important roles in the regulation of both innate and adaptive arms of the immune system. Therapeutic strategies based on anti-TIMs mAbs have shown promising results in experimental tumor models, and synergistic combinations of anti-TIMs mAbs with cancer vaccines, adoptive T-cell therapy, radiotherapy and chemotherapy will have great impact on cancer treatment in future clinical development.  相似文献   

10.
The effects of mAb therapy to CD4 or CD8 on induction of unresponsiveness to Heymann's nephritis by preimmunization with renal tubular antigen in IFA. Anti-CD4 mAbs (MRC Ox35) given for 2 weeks after RTA/IFA completely prevented the induction of resistance to HN, all rats developing proteinuria as well as high titers of autoantibody and Ig and C deposits in glomeruli. Anti-CD8 mAbs (MRC Ox8) did not prevent induction of unresponsiveness, even though it totally depleted CD8+ cells. In control rats not preimmunized with RTA/IFA, mAb therapy did not suppress disease induction, but in the case of anti-CD4 therapy enhanced the severity of disease. Persistent depletion of T cell subsets or complement components did not explain the effects of mAb therapy. These studies suggest that CD4+ cells are critical for the induction of unresponsiveness to HN and that therapy with mAb to CD4 can prevent induction of tolerance to an antigen, which has implications for its use in the induction of tolerance.  相似文献   

11.
Anti-tumor mAbs hold promise for cancer therapy, but are relatively inefficient. Therefore, there is a need for agents that might amplify the effectiveness of these mAbs. One such agent is beta-glucan, a polysaccharide produced by fungi, yeast, and grains, but not mammalian cells. Beta-glucans are bound by C receptor 3 (CR3) and, in concert with target-associated complement fragment iC3b, elicit phagocytosis and killing of yeast. Beta-glucans may also promote killing of iC3b-opsonized tumor cells engendered by administration of anti-tumor mAbs. In this study, we report that tumor-bearing mice treated with a combination of beta-glucan and an anti-tumor mAb show almost complete cessation of tumor growth. This activity evidently derives from a 25-kDa fragment of beta-glucan released by macrophage processing of the parent polysaccharide. This fragment, but not parent beta-glucan, binds to neutrophil CR3, induces CBRM 1/5 neoepitope expression, and elicits CR3-dependent cytotoxicity. These events require phosphorylation of the tyrosine kinase, Syk, and consequent PI3K activation because beta-glucan-mediated CR3-dependent cytotoxicity is greatly decreased by inhibition of these signaling molecules. Thus, beta-glucan enhances tumor killing through a cascade of events, including in vivo macrophage cleavage of the polysaccharide, dual CR3 ligation, and CR3-Syk-PI3K signaling. These results are important inasmuch as beta-glucan, an agent without evident toxicity, may be used to amplify tumor cell killing and may open new opportunities in the immunotherapy of cancer.  相似文献   

12.
Complement plays an important role in the immunotherapeutic action of the anti-CD20 mAb rituximab, and therefore we investigated whether complement might be the limiting factor in rituximab therapy. Our in vitro studies indicate that at high cell densities, binding of rituximab to human CD20(+) cells leads to loss of complement activity and consumption of component C2. Infusion of rituximab in chronic lymphocytic leukemia patients also depletes complement; sera of treated patients have reduced capacity to C3b opsonize and kill CD20(+) cells unless supplemented with normal serum or component C2. Initiation of rituximab infusion in chronic lymphocytic leukemia patients leads to rapid clearance of CD20(+) cells. However, substantial numbers of B cells, with significantly reduced levels of CD20, return to the bloodstream immediately after rituximab infusion. In addition, a mAb specific for the Fc region of rituximab does not bind to these recirculating cells, suggesting that the rituximab-opsonized cells were temporarily sequestered by the mononuclear phagocytic system, and then released back into the circulation after the rituximab-CD20 complexes were removed by phagocytic cells. Western blots provide additional evidence for this escape mechanism that appears to occur as a consequence of CD20 loss. Treatment paradigms to prevent this escape, such as use of engineered or alternative anti-CD20 mAbs, may allow for more effective immunotherapy of chronic lymphocytic leukemia.  相似文献   

13.
《MABS-AUSTIN》2013,5(1):265-275
Monoclonal antibodies (mAbs) play an increasing important role in the therapeutic armamentarium against multiple sclerosis (MS), an inflammatory and degenerative disorder of the central nervous system. Most of the mAbs currently developed for MS are immunomodulators blocking the inflammatory immune process. In contrast with mAbs targeting immune function, GNbAC1, a humanized IgG4 mAb, targets the multiple sclerosis associated retrovirus envelope (MSRV-Env) protein, an upstream factor in the pathophysiology of MS. MSRV-Env protein is of endogenous retroviral origin, expressed in MS brain lesions, and it is pro-inflammatory and toxic to the remyelination process, by preventing the differentiation of oligodendrocyte precursor cells. We present the preclinical and early clinical development results of GNbAC1. The specificity of GNbAC1 for its endogenous retroviral target is described. Efficacy of different mAb versions of GNbAC1 were assessed in MSRV-Env induced experimental allergic encephalitis (EAE), an animal model of MS. Because the target MSRV-Env is not expressed in animals, no relevant animal model exists for a proper in vivo toxicological program. An off-target 2-week toxicity study in mice was thus performed, and it showed an absence of safety risk. Additional in vitro analyses showed an absence of complement or antibody-dependent cytotoxicity as well as a low level of cross-reactivity to human tissues. The first-in-man clinical study in 33 healthy subjects and a long-term clinical study in 10 MS patients showed that GNbAC1 is well tolerated in humans without induction of immunogenicity and that it induces a pharmacodynamic response on MSRV biomarkers. These initial results suggest that the mAb GNbAC1 could be a safe long-term treatment for patients with MS with a unique therapeutic mechanism of action.  相似文献   

14.
Bullous pemphigoid (BP) is an autoimmune blistering disease caused by IgG autoantibodies targeting the noncollagenous 16A (NC16A) domain of human collagen 17 (hCOL17), which triggers blister formation via complement activation. Previous in vitro analysis demonstrated that IgG1 autoantibodies showed much stronger pathogenic activity than IgG4 autoantibodies; however, the exact pathogenic role of IgG1 autoantibodies has not been fully demonstrated in vivo. We constructed a recombinant IgG1 mAb against hCOL17 NC16A from BP patients. In COL17-humanized mice, this mAb effectively reproduced a BP phenotype that included subepidermal blisters, deposition of IgG1, C1q and C3, neutrophil infiltration, and mast cell degranulation. Subsequently, alanine substitutions at various C1q binding sites were separately introduced to the Fc region of the IgG1 mAb. Among these mutated mAbs, the one that was mutated at the P331 residue completely failed to activate the complement in vitro and drastically lost pathogenic activity in COL17-humanized mice. These findings indicate that P331 is a key residue required for complement activation and that IgG1-dependent complement activation is essential for blister formation in BP. This study is, to our knowledge, the first direct evidence that IgG1 Abs to hCOL17 NC16A can induce blister formation in vivo, and it raises the possibility that IgG1 mAbs with Fc modification may be used to block pathogenic epitopes in autoimmune diseases.  相似文献   

15.
Monoclonal antibodies (mAbs) play an increasing important role in the therapeutic armamentarium against multiple sclerosis (MS), an inflammatory and degenerative disorder of the central nervous system. Most of the mAbs currently developed for MS are immunomodulators blocking the inflammatory immune process. In contrast with mAbs targeting immune function, GNbAC1, a humanized IgG4 mAb, targets the multiple sclerosis associated retrovirus envelope (MSRV-Env) protein, an upstream factor in the pathophysiology of MS. MSRV-Env protein is of endogenous retroviral origin, expressed in MS brain lesions, and it is pro-inflammatory and toxic to the remyelination process, by preventing the differentiation of oligodendrocyte precursor cells. We present the preclinical and early clinical development results of GNbAC1. The specificity of GNbAC1 for its endogenous retroviral target is described. Efficacy of different mAb versions of GNbAC1 were assessed in MSRV-Env induced experimental allergic encephalitis (EAE), an animal model of MS. Because the target MSRV-Env is not expressed in animals, no relevant animal model exists for a proper in vivo toxicological program. An off-target 2-week toxicity study in mice was thus performed, and it showed an absence of safety risk. Additional in vitro analyses showed an absence of complement or antibody-dependent cytotoxicity as well as a low level of cross-reactivity to human tissues. The first-in-man clinical study in 33 healthy subjects and a long-term clinical study in 10 MS patients showed that GNbAC1 is well tolerated in humans without induction of immunogenicity and that it induces a pharmacodynamic response on MSRV biomarkers. These initial results suggest that the mAb GNbAC1 could be a safe long-term treatment for patients with MS with a unique therapeutic mechanism of action.  相似文献   

16.
《MABS-AUSTIN》2013,5(3):273-288
The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.  相似文献   

17.
Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163+CD64+ M2-polarized suppressor macrophages, skewing their differentiation toward CD14-CD1a+ dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.  相似文献   

18.
The complement system is a powerful innate mechanism involved in protection of the host against pathogens. It also has a role in the clearance of apoptotic cells and has been implicated in a range of pathologies including autoimmunity and graft rejection. The control of complement is mediated through the complement regulatory proteins (CRPs). These are present on most cells and protect normal cells from complement-mediated attack during innate activation. However, in a range of pathologies and cancer, these molecules are up or down regulated, sometimes secreted and even lost. We will review the expression of CRPs in cancer, focussing on CD55 and highlight other roles of the CRPs and their involvement in leukocyte function. We will also provide some data providing a potential mechanism by which soluble CD55 can inhibit T-cell function and discuss some of the implications of this data.This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30 June 2005.  相似文献   

19.
In the female reproductive tract, the complement system represents a defense mechanism that can act directly against pathogens and cells, and mediates inflammatory response. Endometrial cells are protected from autologous complement attack by membrane-bound complement regulatory proteins (CRPs) that prevent complement activation: membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59). In this work we show that all CRPs were overexpressed after LPS exposure. Maximal stimulatory effect was detected after 6h, and was declining after 12h, reaching control levels in 24h. CD59 was the protein showing the more prominent effect. There seems to be a slight increase of CRP expression in the endometrium of sterile patients that have anti-endometrial antibodies (AEA) in their serum. Our results suggest that under stress, the high expression of CRPs (CD46, CD55, and CD59) could protect endometrial injured cells against complement mediated lysis. The survival of these cells with some biochemical modifications would enable autoimmune response.  相似文献   

20.
The complement system is one potential cytotoxic effector mechanism that might be effective in immunotherapy of cancer using monoclonal antibodies (mAb) directed against tumor antigens. In order to evaluate the treatment outcome from trials using mAb in cancer patients, assessment of complement-dependent cytotoxicity (CDC) may therefore be of interest. Here we describe the elaboration of a CDC assay in vitro using a rat hepatoma cell line, H4-II-E, as target cells sensitised with mAb F12, directed against the tumor-associated ganglioside antigen fucosyl-GM1. Sensitised cells were incubated with various concentrations of fresh serum as complement source for 48 h and cytotoxicity was then assessed by the tetrazolium bromide (MTT) test. A large variation in CDC efficacy was observed between individual serum donors. No differences in CDC could be seen between healthy donors and cancer patients. The CDC showed a strong correlation to the serum concentrations of complement factor C4, supporting the validity of the assay. Our results suggest that there may be significant variations in complement function within and between individuals that might influence the outcome of clinical mAb therapy. The H4/F12 CDC assay described here, together with measurement of individual complement factors, such as C4, should be further validated in cancer patients at various disease stages and phases of treatment. Received: 25 November 1999 / Accepted: 13 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号