共查询到20条相似文献,搜索用时 15 毫秒
1.
Letizia Mattii Francesco Bianchi Iana Da Prato Amelio Dolfi Nunzia Bernardini 《In vitro cellular & developmental biology. Animal》2001,37(4):251-258
Summary The present study was performed in four renal cell lines to evaluate their capability to: (1) produce and express transforming
growth factor α (TGFα), its respective receptor, the epidermal growth factor receptor (EGFr) and the small G protein, RhoA,
and (2) exhibit morphogenetic properties when grown on Matri-cell substrates. The cell lines were derived from normal (Madin-Darby
canine kidney cells), embryonic (SK-NEP-1 and 293 cells), and cancerous (human renal adenocarcinoma cells) kidneys. TGFα messenger
ribonucleic acid evaluated by a nonradioactive in situ hybridization technique, was found to be expressed in all the cell
lines. Large amounts of TGFα peptide were observed in all four cell lines, while EGFr was highly expressed only in cancerous
ACHN and embryonic-tumor SK-NEP-1 cells. RhoA peptide was found in appreciable amounts in SK-NEP-1 and 293 cells (compared
to the other two cell lines). The morphogenetic properties of the four cell lines were assessed, by culturing them on Matri-cell
dishes: SK-NEP-1 cells alone were found to grow in three-dimensional structures forming clusters and worm-like cellular aggregates.
This feature was displayed by SK-NEP-1 cells but not by the other three cell lines, and may be connected with the contemporary
presence of RhoA, EGFr, and TGFα found in significant amounts only in the SK-NEP-1 cell line. 相似文献
2.
《Organogenesis》2013,9(4):264-271
Doping and manipulation are undesirable companions of professional and amateur sport. Numerous adverse analytical findings as well as confessions of athletes have demonstrated the variety of doping agents and methods as well as the inventiveness of cheating sportsmen. Besides ‘conventional’ misuse of drugs such as erythropoietin and insulins, experts fear that therapeutics that are currently undergoing clinical trials might be part of current or future doping regimens, which aim for an increased functionality and performance or organs and tissues. Emerging drugs such as selective androgen receptor modulators (SARMs), hypoxia-inducible factor (HIF) complex stabilizers or modulators of muscle fiber calcium channels are considered relevant for current and future doping controls due to their high potential for misuse in sports. 相似文献
3.
Chandler JW 《Journal of experimental botany》2008,59(11):2917-2931
The cotyledon represents one of the bases of classification within the plant kingdom, providing the name-giving difference between dicotyledonous and monocotyledonous plants. It is also a fundamental organ and there have been many reports of cotyledon mutants in many species. The use of these mutants where they have arisen in Arabidopsis has allowed us to unravel some of the complexities of embryonic patterning and cotyledon development with a high degree of resolution. The cloning of genes involved in cotyledon development from other species, together with physiological work, has supported the hypothesis that there exists a small number of orthologous gene hierarchies, particularly those involving auxin. The time is therefore appropriate for a summary of the regulation of cotyledon development gleaned from cotyledon mutants and regulatory pathways in the model species Arabidopsis and what can be inferred from cotyledon mutants in other species. There is an enormous variation in cotyledon form and development throughout the plant kingdom and this review focuses on debates about the phylogenetic relationship between mono- and dicotyledony, discusses gymnosperm cotyledon development and pleiocotyly in natural populations, and explores the limits of homology between cotyledons and leaves. 相似文献
4.
5.
Mechanisms of ectodermal organogenesis 总被引:17,自引:0,他引:17
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth. 相似文献
6.
Cytoskeleton and plant organogenesis 总被引:4,自引:0,他引:4
Kost B Bao YQ Chua NH 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1422):777-789
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development. 相似文献
7.
8.
Wnt signals play a critical role in regulating the normal development of the mammary gland and dysregulation of Wnt signaling causes breast cancer. This pathway is involved in the earliest development of the mammary gland in embryos and its role extends through the functional differentiation of the gland during pregnancy. In this review, we summarize the molecular mechanisms through which Wnts regulate mammary gland development in the mouse.Key words: Wnt, mammary gland, embryo, postnatal, cancer, stem cell 相似文献
10.
Organogenic cultures were induced from zygotic embryo and megagametophyte explants of the Central American cycad species,
Dioon edule. Plant growth medium consisted of B5 major salts, Murashige and Skoog minor salts and organics, 400 mg l−1 glutamine, 100 mg l−1 arginine, 100 mg l−1 asparagine, 60 g l−1 sucrose, 8 g l−1 Difco Bacto agar and was supplemented with kinetin (0 – 13.94 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0 – 9.05 μM)
arranged as a 5×4 factorial in a randomized block design. Callus initiation occurred on a wide range of medium formulations
from megagametophyte explants; however, shoot formation occurred only on medium supplemented with 2.26 μM 2,4-D. In comparison,
callus initiation from explanted zygotic embryos occurred on fewer medium formulations, and adventitious shoot induction occurred
from callus on formulations with 9.29–13.94 μM kinetin + 0.45–9.05 μM 2,4-D. Rooted shoots, derived from megagametophyte and
zygotic embryo cultures, have been regenerated.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
11.
《Organogenesis》2013,9(4):247-256
The cardiovascular system, consisting of the heart, blood vessels and hematopoietic cells, is the first organ system to develop in vertebrates and is essential for providing oxygen and nutrients to the embryo and adult organs. Work done predominantly using the mouse and zebrafish as model systems has demonstrated that Vascular Endothelial Growth Factor (VEGF, also known as VEGFA) and its receptors KDR (FLK1/VEGFR2), FLT1 (VEGFR1), NRP1 and NRP2 play essential roles in many different aspects of cardiovascular development, including endothelial cell differentiation, migration and survival as well as heart formation and hematopoiesis. This review will summarize the approaches taken and conclusions reached in dissecting the role of VEGF signalling in vivo during the development of the early cardiovasculature and other organ systems. The VEGF?mediated assembly of a functional vasculature is also a prerequisite for the proper formation of other organs and for tissue homeostasis, because blood vessels deliver oxygen and nutrients and vascular endothelium provides inductive signals to other tissues. Particular emphasis will therefore be placed in this review on the cellular interactions between vascular endothelium and developing organ systems, in addition to a discussion of the role of VEGF in modulating the behavior of nonendothelial cell populations. 相似文献
12.
J R Collier 《Developmental biology》1983,100(1):256-259
The proteins labeled by normal and lobeless embryos of Ilyanassa obsoleta incubated in [35S]methionine during early and late organogenesis were shown by two-dimensional electrophoresis to be qualitatively equivalent. It is concluded that these polypeptides are part of the ubiquitous proteins required for cellular maintenance and that they are not uniquely associated with the differentiation of any specific organ or structure. 相似文献
13.
Sabine Fuhrmann 《Organogenesis》2008,4(2):60-67
The vertebrate eye consists of multiple tissues with distinct embryonic origins. To ensure formation of the eye as a functional organ, development of ocular tissues must be precisely coordinated. Besides intrinsic regulators, several extracellular pathways have been shown to participate in controlling critical steps during eye development. Many components of Wnt/Frizzled signaling pathways are expressed in developing ocular tissues, and substantial progress has been made in the past few years in understanding their function during vertebrate eye development. Here, I summarize recent work using functional experiments to elucidate the roles of Wnt/Frizzled pathways during development of ocular tissues in different vertebrates.Key words: eye, retina, ciliary body, lens, vasculature, Wnt, frizzled, mouse, frog, chick, zebrafish 相似文献
14.
15.
《Organogenesis》2013,9(2):123-133
While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity, and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research. 相似文献
16.
《Organogenesis》2013,9(2):109-115
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb. 相似文献
17.
18.
Thomson AA 《Differentiation; research in biological diversity》2008,76(6):587-598
Abstract The development of the prostate is dependent upon androgens and stromal–epithelial interactions. Understanding the molecules and mechanisms by which androgens control prostate organogenesis has been a considerable challenge over the past few decades. Similarly, identifying the molecular signals passing between stromal and epithelial cells has been difficult, and consequently understanding how androgens and stromal–epithelial signalling interact is poorly understood. There remains significant uncertainty regarding how androgens control the growth of the prostate, although several pathways have been identified that are required for prostate development or which alter prostate growth. This review will summarize past findings relating to the pathways that might mediate the effects of androgens as well as molecules that act as stromal to epithelial signals in the prostate. It will also examine the approaches used to identify pathways of importance and the historical concepts that have informed these studies. In particular, the question of which mechanisms might be involved in early prostate organogenesis as well as anatomic aspects of organ induction will be described. Finally, models of prostatic development will be proposed and discussed. 相似文献
19.
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.Key words: Wnts, limb initiation, outgrowth, patterning, morphogenesis 相似文献
20.
《Organogenesis》2013,9(2):100-108
Reporter transgene, knockout, and misexpression studies support the notion that Wnt/β-catenin signaling regulates aspects of branching morphogenesis, regional specialization of the epithelium and mesenchyme, and establishment of progenitor cell pools. As demonstrated for other foregut endoderm-derived organs, β-catenin and the Wnt/β-catenin signaling pathway contribute to control of cellular proliferation, differentiation and migration. However, the contribution of Wnt/β-catenin signaling to these processes is shaped by other signals impinging on target tissues. In this review, we will concentrate on roles for Wnt/β-catenin in respiratory system development, including segregation of the conducting airway and alveolar compartments, specialization of the mesencyme, and establishment of tracheal asymmetries and tracheal glands. 相似文献