首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antibody targeting of cancer is showing clinical and commercial success after much intense research and development over the last 30 years. They still have the potential to delivery long-term cures but a shift in thinking towards a cancer stem cell (CSC) model for tumor development is certain to impact on how antibodies are selected and developed, the targets they bind to and the drugs used in combination with them. CSCs have been identified from many human tumors and share many of the characteristics of normal stem cells. The ability to renew, metabolically or physically protect themselves from xenobiotics and DNA damage and the range of locomotory-related receptors expressed could explain the observations of drug resistance and radiation insensitivity leading to metastasis and patient relapse.Targeting CSCs could be a strategy to improve the outcome of cancer therapy but this is not as simple as it seems. Targets such as CD133 and EpCAM/ESA could mark out CSCs from normal cells enabling specific intervention but indirect strategies such as interfering with the establishment of a supportive niche through anti-angiogenic or anti-stroma therapy could be more effective.This review will outline the recent discoveries for CSCs across the major tumor types highlighting the possible molecules for intervention. Examples of antibody-directed CSC therapies and the outlook for the future development of this emerging area will be given.Key words: antibody, targeting, cancer, stem cell, therapyMonoclonal antibodies are clinically and commercially-established therapeutics.1,2 A great deal of progress has been made over the last 30 years in overcoming problems and translating the phenomenal amount of laboratory research into clinical products. However, antibodies or other molecular interventions against cancer do not necessarily cure. In many cases, they can increase survival and improve quality of life. So, have we been hitting the wrong targets? Certainly, receptors such as human epidermal growth factor-1 (HER1/EGFR), HER2, CD20 and growth factors such as vascular endothelial cell (VEGF) and Interleukin-6 (IL-6) are involved in the cancer process, but have we been overlooking the real culprits?This review aims to examine the biology of cancer stem cells considering the markers defining them and their survival and will describe the new antibody-focused strategies emerging to target them for more effective treatment of cancer.  相似文献   

2.
Natural killer (NK) cells are key players of the innate immune system. NK cells provide protection against infectious pathogens and malignancies in cell. This characteristic may be attributable to their intrinsic diverse potentialities and also their cooperation with adaptive immune lymphocytes, known as B and T cells. The growth, recurrence, and metastasis of cancer cells, and the failure of cytoreductive therapies against cancer cells are due to the small population of intratumor stem-like cells, called cancer stem cells (CSCs). Furthermore, NK cells can efficiently eradicate heterogeneous tumor cells after a long-term treatment. Therefore, NK cell–based therapy is a promising strategy to target and break CSC-associated resistance to anticancer drugs treatment. In this review, we have presented an overview of the emerging knowledge of the characteristics, diversities, and mechanism-driven immune surveillance of human NK cells and advances in NK cell–based immunotherapies. Finally, we will discuss how these cells can be applied to introduce the next generation of vaccine- and immune-based approaches to prevent drug resistance.  相似文献   

3.
Over the past few years, supporting evidence for the cancer stem cell hypothesis has been provided for an increasing number of tumor entities. According to this hypothesis, only a small population of undifferentiated cells with stem cell characteristics has the ability to form tumors through asymmetric division and subsequent differentiation of the progeny into the heterogeneous cell types that comprise a tumor. Recently, we were able to show that cancer stem cells are not only responsible for tumorigenesis, but that they contain a subpopulation characterized by CXCR4 expression which is exclusively capable of disseminating and subsequently providing the substrate for tumor metastasis. Of note, these recent advances in our understanding of cancer stem cell biology raise more questions than they answer. Some of these arising questions regarding the targeted elimination of these cancer stem cells will be addressed in this perspective.  相似文献   

4.
Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment.  相似文献   

5.
A major challenge in formulating an effective immunotherapy is to overcome the mechanisms of tumor escape from immunosurveillance. We showed that hypoxia-induced autophagy impairs cytotoxic T-lymphocyte (CTL)-mediated tumor cell lysis by regulating phospho-STAT3 in target cells. Autophagy inhibition in hypoxic cells decreases phospho-STAT3 and restores CTL-mediated tumor cell killing by a mechanism involving the ubiquitin proteasome system and SQSTM1/p62. Simultaneously boosting the CTL-response, using a TRP-peptide vaccination strategy, and targeting autophagy in hypoxic tumors, improves the efficacy of cancer vaccines and promotes tumor regression in vivo. Overall, in addition to its immunosuppressive effect, the hypoxic microenvironment also contributes to immunoresistance and can be detrimental to antitumor effector cell functions.  相似文献   

6.
A new 'spin' on neural stem cells?   总被引:6,自引:0,他引:6  
The existence of neural stem cells in the adult brain was essentially denied until the last decade. Within the past ten years, considerable progress has been made in examining the fundamental properties of neural stem cells. Most recently there has been much interest in the identification and precise location of the adult neural stem cells in vivo. Studies examining the localization of neural stem cells are controversial and suggest two distinct locations within the adult brain: the ependymal layer lining the ventricles, and the subependymal layer immediately adjacent to the ependyma.  相似文献   

7.
Cancer stem cells have been implicated in a number of solid malignancies including prostate cancer. In the case of localised prostate cancer, patients are often treated with surgery (radical prostatectomy) and/or radiotherapy. However, disease recurrence is an issue in about 30% of patients, who will then go on to receive hormone ablation therapy. Hormone ablation therapy is often palliative in a vast proportion of individuals, and for hormone-refractory patients, there are several immunotherapies targeting a number of prostate tumour antigens which are currently in development. However, clinical responses in this setting are inconsistent, and it is believed that the failure to achieve full and permanent tumour eradication is due to a small, resistant population of cells known as ‘cancer stem cells’ (CSCs). The stochastic and clonal evolution models are among several models used to describe cancer development. The general consensus is that cancer may arise in any cell as a result of genetic mutations in oncogenes and tumour suppressor genes, which consequently result in uncontrolled cell growth. The cancer stem cell theory, however, challenges previous opinion and proposes that like normal tissues, tumours are hierarchical and only the rare subpopulation of cells at the top of the hierarchy possess the biological properties required to initiate tumourigenesis. Furthermore, where most cancer models infer that every cell within a tumour is equally malignant, i.e. equally capable of reconstituting new tumours, the cancer stem cell theory suggests that only the rare cancer stem cell component possess tumour-initiating capabilities. Hence, according to this model, cancer stem cells are implicated in both tumour initiation and progression. In recent years, the role of epithelial–mesenchymal transition (EMT) in the advancement of prostate cancer has become apparent. Therefore, CSCs and EMT are both likely to play critical roles in prostate cancer tumourigenesis. This review summarises the current immunotherapeutic strategies targeting prostate tumour antigens taking into account the need to consider treatments that target cancer stem cells and cells involved in epithelial–mesenchymal transition.  相似文献   

8.
Insulin stimulates glucose transport in muscle and adipose cells by stimulating translocation of glucose transporter 4 (GLUT4) to the plasma membrane. In a recent Cell Metabolism paper, Stenkula et al. found that insulin controls the spatial distribution of GLUT4 on the surface of isolated adipose cells through regulation of their post-fusion dispersal. The presence of GLUT4 in plasma membrane-associated clusters is suggestive of a new paradigm in membrane protein recycling.  相似文献   

9.
Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.  相似文献   

10.
For several decades, it has been known that many tissues of the human body replenish themselves with the help of specialized stem cells. Although the role of stem cells for organs with a rapid cellular turnover is well established, other organs have seemed to be exempt from stem cell-based repair. Recent studies have suggested that the heart has an inherent ability to replace its parenchymal cells continuously either by resident stem cells or by other cells that are recruited into the heart. The evidence for this acclaimed paradigm shift, however, is limited. The basis of the acclaimed beneficial effects of stem cell therapies must be investigated carefully and the fates of potential cardiac stem cells need to be studied by established cell tracing techniques.  相似文献   

11.
Mesenchymal stem cells proliferate extensively in cultures of unselected, total cell isolates from multiple fetal and adult organs. Perivascular cells, principally pericytes surrounding capillaries and microvessels, but also adventitial cells located around larger arteries and veins, have been recently identified as possible originators of mesenchymal stem cells, first by phenotypic analogies and eventually following stringent cell sorting. While it is clear that purified perivascular cells exhibit multiple mesodermal developmental potentials and become indistinguishable from conventionally derived mesenchymal stem cells after in vitro culture, the possible roles played by these blood vessel-bound cells in organogenesis and adult tissue repair remain elusive. Unsolved questions regarding the identity of mesenchymal stem cells have not compromised the consideration of these cells as outstanding candidates for cell therapies. Better knowledge of the lineage affiliation, tissue distribution and molecular identity of mesenchymal stem cells will contribute to the development of more efficient, safer therapeutic cells.  相似文献   

12.
Cancers are thought to originate in stem cells through the accumulation of multiple mutations. Some of these mutations result in a loss of heterozygosity (LOH). A recent report demonstrates that exposure of mouse embryonic stem cells to nontoxic amounts of mutagens triggers a marked increase in the frequency of LOH. Thus, mutagen induction of LOH in embryonic stem cells suggests a new pathway to account for the multiple homozygous mutations in human tumors. This induction could mimic early mutagenic events that generate cancers in human tissue stem cells.  相似文献   

13.
Choline phospholipid metabolism: A target in cancer cells?   总被引:6,自引:0,他引:6  
The experience of treating cancer over the past several decades overwhelmingly demonstrates that the disease continues to evade the vast array of drugs and treatment modalities available in the twenty-first century. This is not surprising in view of the complexity of this disease, and the multiplicities of pathways available to the cancer cell to enable its survival. Although the progression of cancer arrives at a common end point of cachexia, organ failure, and death, common pathways are rare in cancer. Identifying and targeting common pathways that would act across these levels of multiplicity is essential for the successful treatment of this disease. Over the past decade, one common characteristic consistently revealed by magnetic resonance spectroscopic studies is the elevation of phosphocholine and total choline-containing compounds in cancer cells and solid tumors. This elevation has been observed in almost every single cancer type studied with NMR spectroscopy and can be used as an endogenous biomarker of cancer. In this article, we have summarized some of the observations on the choline phospholipid metabolism of cancer cells and tumors, and make a case for targeting the aberrant choline phospholipid metabolism of cancer cells.  相似文献   

14.
15.
BackgroundThe outstanding innovations made by early diagnosis, novel surgical techniques, effective chemotherapy regimens and conformal radiotherapy, have significantly improved patients overall survival and quality of life. Multidisciplinary approach to cancer has also led to an increased prevalence of patients with few, organ-confined metastases, who can experience long-term survival even if their disease is no longer localized. Liver is one of the most common site for metastatic disease from several cancers, and when metastatic disease is confined to liver, given the ability of this organ to regenerate almost to its optimal volume, surgical resection represents the standard of care because is associated with a better prognosis. Approximately 70–90% of liver metastases, however, are unresectable and a safe, effective alternative therapeutic option is necessary for these patients.Materials and methodsA review of the current literature was performed to analyze the role of SBRT in treating liver metastases from different cancers. A literature search using the terms “SBRT” and “liver metastases” was carried out in PUBMED.ResultsStereotactic body radiation therapy has shown to provide promising results in the treatment of liver metastases, thanks to the ability of this procedure to deliver a conformal high dose of radiation to the target lesion and a minimal dose to surrounding critical tissues.ConclusionStereotactic body radiation therapy is a non-invasive, well-tolerated and effective treatment for patients with liver metastases not suitable for surgical resection.  相似文献   

16.
With the political, social and financial drives for cancer research, many advances have been made in the treatment of many different cancer types. For example, given the increase in awareness, early detection, and treatment of breast and prostate cancers, we have seen substantial increases in survival rates. Unfortunately there are some realms of cancer that have not seen these substantial advancements, largely due to their rapid progression and the inability to specifically target therapy.  相似文献   

17.
Why are dendritic cells central to cancer immunotherapy?   总被引:7,自引:0,他引:7  
Dendritic cell (DC)-based immunotherapy is rapidly emerging as a viable alternative to radiation or chemotherapy in the treatment of cancer. The resurgence of interest in cancer immunotherapy reflects the promising results that have been obtained in both animal models and early clinical trials with the DC-based approach. Here I suggest that this optimism is justified because the efficient capture and presentation of antigens by DCs is central to the induction of an immune response. I argue that the mechanism by which DCs capture antigen suggests that the immune system might actually be 'blind' to tumours, thereby challenging the theory of immune surveillance.  相似文献   

18.
Beyond tumorigenesis: cancer stem cells in metastasis   总被引:38,自引:0,他引:38  
The importance of cancer stem cells (CSCs) in tumor-initiation has been firmly established in leukemia and recently reported for a variety of solid tumors. However, the role of CSCs in multistage cancer progression, particularly with respect to metastasis, has not been well-defined. Cancer metastasis requires the seeding and successful colonization of specialized CSCs at distant organs. The biology of normal stem cells and CSCs share remarkable similarities and may have important implications when applied to the study of cancer metastasis. Furthermore, overlapping sets of molecules and pathways have recently been identified to regulate both stem cell migration and cancer metastasis. These molecules constitute a complex network of cellular interactions that facilitate both the initiation of the pre-metastasis niche by the primary tumor and the formation of a nurturing organ microenvironment for migrating CSCs. In this review, we surveyed the recent advances in this dynamic field and propose a unified model of cancer progression in which CSCs assume a central role in both tumorigenesis and metastasis. Better understanding of CSCs as a fundamental component of the metastatic cascade will lead to novel therapeutic strategies against metastatic cancer.  相似文献   

19.
The mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway is commonly activated in cancer cells including acute myeloid leukemia (AML) and has been designed as a major target for cancer therapy. However, the efficacy of rapalogs (mTORC1 inhibitors) is limited in AML, due to the feedback activation of PI3K or ERK signaling pathways upon mTORC1 inhibition, which pathways should be simultaneously targeted to enhance the anti-leukemic activity of rapalogs. Moreover, the mRNA translation process is mTORC1-independent in AML, although markedly contributing to oncogenesis in this disease, and this also strongly participates to rapalogs resistance. Translation inhibition could be achieved by directly targeting the translation initiating complex using the 4EGI-1 compound, anti-eIF4E antisense oligonucleotides or the antiviral drug ribavirin or by second generation mTOR inhibitors (TORkinhibs). These new approaches represent promising perspectives for AML therapy that should have clinical development in the future.  相似文献   

20.
Mesenchymal stem cells (MSC) have attracted recent attention for their cell therapy potential, based in particular on their immunosuppressive properties, which have served as the basis for the treatment of autoimmune diseases. Interestingly, MSC have been used in cell therapy strategies to deliver therapeutical genes. Cell therapy approaches taking advantages of MSC have been proposed, as MSC display a potential tropsim for tumors. However, all these strategies raise a series of questions about the safety of MSC, as MSC could enhance tumor growth and metastasis. This review summarizes recent findngs about MSC in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号