首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The clinical success of therapeutic antibodies is demonstrated by the number of antibody therapeutics that have been brought to market and the increasing number of therapeutic antibodies in development. Recombinant antibodies are molecular-targeted therapeutic agents and represent a major new class of drugs. However, it is still very important to optimize and maximize the clinical efficacy of therapeutic antibodies, in part to help lower the cost of therapeutic antibodies by potentially reducing the dose or the duration of treatment. Clinical trials using therapeutic antibodies fully lacking core fucose residue in the Fc oligosaccharides are currently underway, and their remarkable physiological activities in humans in vivo have attracted attention as next-generation therapeutic antibody approaches with improved efficacy. Thus, an industrially applicable antibody production process that provides consistent yields of fully non-fucosylated antibody therapeutics with fixed quality has become a key goal in the successful development of next-generation therapeutic agents. In this article, we review the current technologies for production of therapeutic antibodies with control of fucosylation of the Fc N-glycans.Key words: fucose, non-fucosylated, therapeutic antibodies, ADCC, FcγRIIIa  相似文献   

2.
Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated. Recently, antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, has been found to be one of the critical effector functions responsible for the clinical efficacy of therapeutic antibodies such as anti-CD20 IgG1 rituximab (Rituxan®) and anti-Her2/neu IgG1 trastuzumab (Herceptin®). ADCC is triggered upon the binding of lymphocyte receptors (FcγRs) to the antibody Fc region. The activity is dependent on the amount of fucose attached to the innermost GlcNAc of N-linked Fc oligosaccharide via an α-1,6-linkage, and is dramatically enhanced by a reduction in fucose. Non-fucosylated therapeutic antibodies show more potent efficacy than their fucosylated counterparts both in vitro and in vivo, and are not likely to be immunogenic because their carbohydrate structures are a normal component of natural human serum IgG. Thus, the application of non-fucosylated antibodies is expected to be a powerful and elegant approach to the design of the next generation therapeutic antibodies with improved efficacy. In this review, we discuss the importance of the oligosaccharides attached to the Fc region of therapeutic antibodies, especially regarding the inhibitory effect of fucosylated therapeutic antibodies on the efficacy of non-fucosylated counterparts in one medical agent. The impact of completely non-fucosylated therapeutic antibodies on therapeutic fields will be also discussed.  相似文献   

3.
《Cell reports》2023,42(7):112754
  1. Download : Download high-res image (319KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
Recombinant antibody technology has revolutionized the development of antibody therapeutics. This minireview offers an overview of enabling technologies and future prospects of this rapidly progressing field. Remark: Trade names are copyright of distributing companies.  相似文献   

6.
Seed‐specific expression is an appealing alternative technology for the production of recombinant proteins in transgenic plants. Whereas attractive yields of recombinant proteins have been achieved by this method, little attention has been paid to the intracellular deposition and the quality of such products. Here, we demonstrate a comparative study of two antiviral monoclonal antibodies (mAbs) (HA78 against Hepatitis A virus; 2G12 against HIV) expressed in seeds of Arabidopsis wild‐type (wt) plants and glycosylation mutants lacking plant specific N‐glycan residues. We demonstrate that 2G12 is produced with complex N‐glycans at great uniformity in the wt as well as in the glycosylation mutant, carrying a single dominant glycosylation species, GnGnXF and GnGn, respectively. HA78 in contrast, contains additionally to complex N‐glycans significant amounts of oligo‐mannosidic structures, which are typical for endoplasmic reticulum (ER)‐retained proteins. A detailed subcellular localization study demonstrated the deposition of both antibodies virtually exclusively in the extracellular space, illustrating their efficient secretion. In addition, although a KDEL‐tagged version of 2G12 exhibited an ER‐typical N‐glycosylation pattern, it was surprisingly detected in protein storage vacuoles. The different antibody variants showed different levels of degradation with hardly any degradation products detectable for HA78 carrying GnGnXF glycans. Finally, we demonstrate functional integrity of the HA78 and 2G12 glycoforms using viral inhibition assays. Our data therefore demonstrate the usability of transgenic seeds for the generation of mAbs with a controlled N‐glycosylation pattern, thus expanding the possibilities for the production of optimally glycosylated proteins with enhanced biological activities for the use as human therapeutics.  相似文献   

7.
近年来,治疗性单克隆抗体已成为基础和临床医学研究者及企业关注的热点。目前,针对免疫检查点的治疗性抗体用于肿瘤治疗已显示出较好疗效。在微生物耐药性日益增多、全球突发传染病威胁依然存在及持续性微生物感染难以治愈的当下,抗微生物领域中的抗体治疗正在积极研发中。本文综述了抗体治疗在抗微生物感染领域中的进展,并展望了其应用前景。  相似文献   

8.
《MABS-AUSTIN》2013,5(3):413-415
Therapeutic monoclonal antibodies (mAbs) are currently being approved for marketing in Europe and the United States, as well as other countries, on a regular basis. As more mAbs become available to physicians and patients, keeping track of the number, types, production cell lines, antigenic targets, and dates and locations of approvals has become challenging. Data are presented here for 34 mAbs that were approved in either Europe or the United States (US) as of March 2012, and nimotuzumab, which is marketed outside Europe and the US. Of the 34 mAbs, 28 (abciximab, rituximab, basiliximab, palivizumab, infliximab, trastuzumab, alemtuzumab, adalimumab, tositumomab-I131, cetuximab, ibrituximab tiuxetan, omalizumab, bevacizumab, natalizumab, ranibizumab, panitumumab, eculizumab, certolizumab pegol, golimumab, canakinumab, catumaxomab, ustekinumab, tocilizumab, ofatumumab, denosumab, belimumab, ipilimumab, brentuximab) are currently marketed in Europe or the US. Data for six therapeutic mAbs (muromonab-CD3, nebacumab, edrecolomab, daclizumab, gemtuzumab ozogamicin, efalizumab) that were approved but have been withdrawn or discontinued from marketing in Europe or the US are also included.  相似文献   

9.
Therapeutic monoclonal antibodies (mAbs) are currently being approved for marketing in Europe and the United States, as well as other countries, on a regular basis. As more mAbs become available to physicians and patients, keeping track of the number, types, production cell lines, antigenic targets, and dates and locations of approvals has become challenging. Data are presented here for 34 mAbs that were approved in either Europe or the United States (US) as of March 2012, and nimotuzumab, which is marketed outside Europe and the US. Of the 34 mAbs, 28 (abciximab, rituximab, basiliximab, palivizumab, infliximab, trastuzumab, alemtuzumab, adalimumab, tositumomab-I131, cetuximab, ibrituximab tiuxetan, omalizumab, bevacizumab, natalizumab, ranibizumab, panitumumab, eculizumab, certolizumab pegol, golimumab, canakinumab, catumaxomab, ustekinumab, tocilizumab, ofatumumab, denosumab, belimumab, ipilimumab, brentuximab) are currently marketed in Europe or the US. Data for six therapeutic mAbs (muromonab-CD3, nebacumab, edrecolomab, daclizumab, gemtuzumab ozogamicin, efalizumab) that were approved but have been withdrawn or discontinued from marketing in Europe or the US are also included.Of the 28 mAbs currently marketed in the European Union or the US, 26 are marketed in Europe and 27 are marketed in the US, with 25 marketed in both regions (1 Of the 28 mAbs that are marketed in one or the other region, 43% (12/28) are produced in Chinese hamster ovary (CHO) cells, 25% (7/28) are produced in SP2/0 cells,2 18% (5/28) are produced in NS0 cells,3 and 7% (2/28) are produced in hybridomas. The remaining two products (ranibizumab, certolizumab pegol) are antigen-binding fragments (Fab) that are produced in E. coli. Humanized and human mAbs comprise 36% (10/28) and 32% (9/28) of the total, respectively, while 21% (6/28) are chimeric and 11% (3/28) are murine. Most (75%; 21/28) are canonical full-length mAbs. Of the 7 non-canonical mAbs, three (abciximab, ranibizumab, certolizumab pegol) are Fab, with one of these (certolizumab pegol) pegylated; two (tositumomab-I131, ibrituximab tiuxetan) are radiolabeled when administered to patients; one (brentuximab vedotin) is an antibody-drug conjugate (ADC); and one is bispecific (catumaxomab). Although 16 marketed mAbs target unique antigens, CD20 and tumor necrosis factor are each targeted by 4 mAbs, and epidermal growth factor receptor (EGFR) and vascular endothelial growth factor are each targeted by 2 mAbs. If approved, pertuzumab, which is undergoing regulatory review in Europe and the US as a treatment for breast cancer, would be one of 2 mAbs that target human epidermal growth factor receptor 2 on the market.Table 1. Therapeutic monoclonal antibodies marketed or in review in the European Union or United States
International non-proprietary name (Trade name)Manufacturing cell lineTypeTargetFirst EU (US) approval year
Abciximab (Reopro®)
Sp2/0
Chimeric IgG1κ Fab
GPIIb/IIIa
1995# (1994)
Rituximab (MabThera®, Rituxan®)
CHO
Chimeric IgG1κ
CD20
1998 (1997)
Basiliximab (Simulect®)
Sp2/0
Chimeric IgG1κ
IL2R
1998 (1998)
Palivizumab (Synagis®)
NS0
Humanized IgG1κ
RSV
1999 (1998)
Infliximab (Remicade®)
Sp2/0
Chimeric IgG1κ
TNF
1999 (1998)
Trastuzumab (Herceptin®)
CHO
Humanized IgG1κ
HER2
2000 (1998)
Alemtuzumab (MabCampath, Campath-1H®)
CHO
Humanized IgG1κ
CD52
2001 (2001)
Adalimumab (Humira®)
CHO
Human IgG1κ
TNF
2003 (2002)
Tositumomab-I131 (Bexxar®)
Hybridoma
Murine IgG2aλ
CD20
NA (2003)
Cetuximab (Erbitux®)
Sp2/0
Chimeric IgG1κ
EGFR
2004 (2004)
Ibritumomab tiuxetan (Zevalin®)
CHO
Murine IgG1κ
CD20
2004 (2002)
Omalizumab (Xolair®)
CHO
Humanized IgG1κ
IgE
2005 (2003)
Bevacizumab (Avastin®)
CHO
Humanized IgG1κ
VEGF
2005 (2004)
Natalizumab (Tysabri®)
NS0
Humanized IgG4κ
α4-integrin
2006 (2004)
Ranibizumab (Lucentis®)
E. coli
Humanized IgG1κ Fab
VEGF
2007 (2006)
Panitumumab (Vectibix®)
CHO
Human IgG2κ
EGFR
2007 (2006)
Eculizumab (Soliris®)
NS0
Humanized IgG2/4κ
C5
2007 (2007)
Certolizumab pegol (Cimzia®)
E. coli
Humanized IgG1κ Fab, pegylated
TNF
2009 (2008)
Golimumab (Simponi®)
Sp2/0
Human IgG1κ
TNF
2009 (2009)
Canakinumab (Ilaris®)
Sp2/0
Human IgG1κ
IL1b
2009 (2009)
Catumaxomab (Removab®)
Hybrid
hybridoma
Rat IgG2b/mouse IgG2a bispecific
EpCAM/CD3
2009 (NA)
Ustekinumab (Stelara®)
Sp2/0
Human IgG1κ
IL12/23
2009 (2009)
Tocilizumab (RoActemra, Actemra®)
CHO
Humanized IgG1κ
IL6R
2009 (2010)
Ofatumumab (Arzerra®)
NS0
Human IgG1κ
CD20
2010 (2009)
Denosumab (Prolia®)
CHO
Human IgG2λ
RANK-L
2010 (2010)
Belimumab (Benlysta®)
NS0
Human IgG1κ
BLyS
2011 (2011)
Raxibacumab (Pending)
NS0**
Human IgG1κ
B. anthrasis PA
NA (In review)
Ipilimumab (Yervoy®)
CHO
Human IgG1κ
CTLA-4
2011 (2011)
Brentuximab vedotin (Adcentris®)
CHO
Chimeric IgG1κ; conjugated to monomethyl auristatin E
CD30
In review (2011)
Pertuzumab (Pending)CHOHumanized IgG1κHER2In review (in review)
Open in a separate window*As of March 10, 2012. #Country-specific approval; approved under concertation procedure **Product manufactured for Phase 1 study in humans. Abbreviations: BLyS, B lymphocyte stimulator; C5, complement 5; CD, cluster of differentiation; CHO, Chinese hamster ovary; CTLA-4, cytotoxic T lymphocyte antigen 4; EGFR, epidermal growth factor receptor; EpCAM, epithelial cell adhesion molecule; Fab, antigen-binding fragment; GP glycoprotein; IL, interleukin; NA, not approved; PA, protective antigen; RANK-L, receptor activator of NFκb ligand; RSV, respiratory syncytial virus; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor. Sources: European Medicines Agency public assessment reports, United States Food and Drug Administration (drugs@fda), the international ImMunoGeneTics information system® (www.imgt.org/mAb-DB/index).In addition to the 28 mAbs currently marketed, six mAbs were approved in at least one country of Europe or in the US, but were subsequently withdrawn or discontinued from marketing for various reasons (4,5 Nebacumab (Centoxin®), a human IgM, was approved in The Netherlands, Britain, Germany and France during 1991 as a treatment for Gram-negative sepsis,6 but the product was subsequently withdrawn for safety, efficacy and commercial reasons.7 The murine anti-epithelial cell adhesion molecule (EpCAM) edrecolomab (Panorex®) was approved in Germany in 1995 as an adjuvant treatment for colon cancer, but subsequently withdrawn because of the product’s lack of efficacy.8 Daclizumab was first approved in 1997 for prophylaxis of acute organ rejection in patients receiving renal transplants, but the product was voluntarily withdrawn from the market in Europe effective January 1, 20099 and discontinued for the US market because of the availability of alternative therapy and the diminished market demand.10 The first ADC to be approved, gemtuzumab ozogamicin was marketed in the US for a decade before being voluntarily withdrawn in 2010. The product was approved under the accelerated approval mechanism as a treatment for acute myeloid leukemia (AML), but was withdrawn when a confirmatory clinical trial and post-approval use did not show evidence of clinical benefit in AML patients.11 Efalizumab (Raptiva®) was approved in the US and Europe in 2003 and 2004, respectively, as a treatment for adults with moderate to severe plaque psoriasis, but the product was voluntarily withdrawn from both markets in 2009 because of the risk of side effects, including progressive multifocal leukoencephalopathy.12,13Table 2. Therapeutic monoclonal antibodies withdrawn or discontinued from marketing in the European Union or United States
International proprietary name (Trade name)Manufacturing
cell line
TypeTargetFirst EU (US) approval year
Muromonab-CD3 (Orthoclone OKT3®)
Hybridoma
Murine IgG2a
CD3
1986* (1986)
Nebacumab (Centoxin®)
Hybridoma
Human IgM
Endotoxin
1991*(NA)
Edrecolomab (Panorex®)
Hybridoma
Murine IgG2a
EpCAM
1995*(NA)
Daclizumab (Zenapax®)
NS0
Humanized IgG1κ
IL2R
1999 (1997)
Gemtuzumab ozogamicin (Mylotarg®)
NS0
Humanized IgG4κ
CD33
NA (2000)
Efalizumab (Raptiva®)CHOHumanized IgG1κCD11a2004 (2003)
Open in a separate windowNote: Information current as of March 10, 2012. *European country-specific approval. Abbreviations: CD, cluster of differentiation; CHO, Chinese hamster ovary; EpCAM, epithelial cell adhesion molecule; IL, interleukin; NA, not approved. Sources: European Medicines Agency public assessment reports, United States Food and Drug Administration (drugs@fda), the international ImMunoGeneTics information system® (www.imgt.org/mAb-DB/index).The European Union and the US are not necessarily the first or only markets for therapeutic mAbs (14 Mogamulizumab is a defucosylated humanized anti-CC chemokine receptor 4 (CCR4) antibody developed by Kyowa Hakko Kirin Co Ltd.15 The mAb is undergoing regulatory review in Japan as a treatment for adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma.Table 3. Therapeutic monoclonal antibodies marketed or in review outside the European Union or United States
International proprietary name (Trade name)Manufacturing
cell line
TypeTargetFirst approval year
Nimotuzumab (TheraCIM®, BIOMAB-EGFR®)
NS0
Humanized IgG1κ
EGFR
1999
Mogamulizumab[Not found]Humanized IgG1κCCR4In review in Japan
Open in a separate windowNote: Information current as of March 10, 2012. Abbreviations: CCR, chemokine receptor; EGFR, epidermal growth factor receptor.The 35 marketed mAbs, most of which are canonical full-length IgG1, paved the way for the next generation of antibody-based therapeutics such as ADCs, bispecific antibodies, engineered antibodies, and antibody fragments or domains. The commercial pipeline includes ~350 mAbs now being evaluated in clinical studies around the world as treatments for many indications, including cancer, immunological disorders and infectious diseases.16 The compendium of marketed therapeutic antibodies may thus be substantially larger in the future.  相似文献   

10.
During the past two decades, antibodies, antibody derivatives and vaccines have been developed for therapeutic and diagnostic applications in human and veterinary medicine. Numerous species of dicot and monocot plants have been genetically modified to produce antibodies or vaccines, and a number of diverse transformation methods and strategies to enhance the accumulation of the pharmaceutical proteins are now available. Veterinary applications are the specific focus of this article, in particular for pathogenic viruses, bacteria and eukaryotic parasites. We focus on the advantages and remaining challenges of plant-based therapeutic proteins for veterinary applications with emphasis on expression platforms, technologies and economic considerations.  相似文献   

11.
Gross M 《Current biology : CB》2001,11(14):R541-R542
Since the development of monoclonal antibodies twenty-five years ago, researchers and biotech companies have been looking to develop therapeutic uses for them. Michael Gross looks at some of the latest efforts.  相似文献   

12.
Since the first monoclonal antibody, muromonab-CD3, was approved for therapeutic use in 1986, numerous molecules have been targeted using therapeutic antibody technology, resulting in 26 therapeutic antibodies being approved by the US FDA as of November, 2009. Initial concerns regarding antibody drugs focused on immunogenicity, short serum half-life, and weak efficacy. As the types of antibodies progressed from murine to chimeric, humanized, and fully human antibodies, great progress has been made in immunogenicity and in vivo instability issues. For example, humanized antibodies, such as bevacizumab, exhibit less than 0.2% immunogenicity and a 20 day serum half-life, which is comparable to native immunoglobulin. Some recently developed antibodies are exceedingly efficacious and have become first-line therapy for their target diseases. Here, we address and analyze all clinically approved therapeutic antibodies to date by discussing immunogenicity, half-life, and efficacy.  相似文献   

13.
With the advent of antibody fragments and alternative binding scaffolds, that are devoid of Fc-regions, strategies to increase the half-life of small proteins are becoming increasingly important. Currently, the established method is chemical PEGylation, but more elaborate approaches are being described such as polysialylation, amino acid polymers and albumin-binding derivatives. This article reviews the main strategies for pharmacokinetic enhancement, primarily chemical conjugates and recombinant fusions that increase apparent molecular weight or hydrodynamic radius or interact with serum albumin which itself has a long plasma half-life. We highlight the key chemical linkage methods that preserve antibody function and retain stability and look forward to the next generation of technologies which promise to make better quality pharmaceuticals with lower side effects. Although restricted to antibodies, all of the approaches covered can be applied to other biotherapeutics.  相似文献   

14.
Elimination of the immunogenicity of therapeutic antibodies   总被引:4,自引:0,他引:4  
The immunogenicity of therapeutic Abs limits their long-term use. The processes of complementarity-determining region grafting, resurfacing, and hyperchimerization diminish mAb immunogenicity by reducing the number of foreign residues. However, this does not prevent anti-idiotypic and anti-allotypic responses following repeated administration of cell-binding Abs. Classical studies have demonstrated that monomeric human IgG is profoundly tolerogenic in a number of species. If cell-binding Abs could be converted into monomeric non-cell-binding tolerogens, then it should be possible to pretolerize patients to the therapeutic cell-binding form. We demonstrate that non-cell-binding minimal mutants of the anti-CD52 Ab CAMPATH-1H lose immunogenicity and can tolerize to the "wild-type" Ab in CD52-expressing transgenic mice. This finding could have utility in the long-term administration of therapeutic proteins to humans.  相似文献   

15.
16.
The formation of covalently linked, high molecular weight protein aggregates has been thought to play an important role in opacification of the human lens. Antisera were used in Western blot analysis to demonstrate the involvement of all major classes of lens proteins (alpha, beta and gamma crystallin; the major intrinsic membrane polypeptide) in covalent aggregation. Of these classes, aggregation of gamma and beta crystallins via intermolecular disulfide bonding and aggregation of the major intrinsic membrane polypeptide via intermolecular, non-disulfide bonding were more pronounced in cataractous as compared with normal lenses.  相似文献   

17.
《MABS-AUSTIN》2013,5(3):385-391
There are currently ~25 recombinant full-length IgGs (rIgGs) in the market that have been approved by regulatory agencies as biotherapeutics to treat various human diseases. Most of these are based on IgG1k framework and are either chimeric, humanized or human antibodies manufactured using either Chinese hamster ovary (CHO) cells or mouse myeloma cells as the expression system. Because CHO and mouse myeloma cells are mammalian cells, rIgGs produced in these cell lines are typically N-glycosylated at the conserved asparagine (Asn) residues in the CH2 domain of the Fc, which is also the case with serum IgGs. The Fc glycans present in these rIgGs are for the most part complex biantennary oligosaccharides with heterogeneity associated with the presence or the absence of several different terminal sugars. The major Fc glycans of rIgGs contain 0 or 1 or 2 (G0, G1 and G2, respectively) terminal galactose residues as non-reducing termini and their relative proportions may vary depending on the cell culture conditions in which they were expressed. Since glycosylation is strongly associated with antibody effector functions and terminal galactosylation may affect some of those functions, a panel of commercially available therapeutic rIgGs expressed in CHO cells and mouse myeloma cells were examined for their galactosylation patterns. The results suggest that the rIgGs expressed in CHO cells are generally less galactosylated compared to the rIgGs expressed in mouse myeloma cells. Accordingly, rIgGs produced in CHO cells tend to contain higher levels of G0 glycans compared with rIgGs produced in mouse myeloma cell lines. Despite the apparent wide variability in galactose content, adverse events or safety issues have not been associated with specific galactosylation patterns of therapeutic antibodies. Nevertheless, galactosylation may have an effect on the mechanisms of action of some therapeutic antibodies (e.g., effector pathways) and hence further studies to assess effects on product efficacy may be warranted for such antibodies. For antibodies that do not require effector functions for biological activity, however, setting a narrow specification range for galactose content may be unnecessary.  相似文献   

18.
The binding sites on human IgG1 for human Fc gamma receptor (Fc gamma R) I, Fc gamma RIIa, Fc gamma RIIb, Fc gamma RIIIa and neonatal FcR have been mapped. A common set of IgG1 residues is involved in binding to all Fc gamma Rs, while Fc gamma RII and Fc gamma RIII utilize distinct sites outside this common set. In addition to residues which abrogated binding to the Fc gamma R, several positions were found which improved binding only to specific Fc gamma Rs or simultaneously improved binding to one type of Fc gamma R and reduced binding to another type. Selected IgG1 variants with improved binding to Fc gamma RIIIa were then tested in an in vitro antibody-dependent cellular cytotoxicity (ADCC) assay and showed an enhancement in ADCC when either peripheral blood mononuclear cells or natural killer cells were used.  相似文献   

19.
There are currently ~25 recombinant full-length IgGs (rIgGs) in the market that have been approved by regulatory agencies as biotherapeutics to treat various human diseases. Most of these are based on IgG1k framework and are either chimeric, humanized or human antibodies manufactured using either Chinese hamster ovary (CHO) cells or mouse myeloma cells as the expression system. Because CHO and mouse myeloma cells are mammalian cells, rIgGs produced in these cell lines are typically N-glycosylated at the conserved asparagine (Asn) residues in the CH2 domain of the Fc, which is also the case with serum IgGs. The Fc glycans present in these rIgGs are for the most part complex biantennary oligosaccharides with heterogeneity associated with the presence or the absence of several different terminal sugars. The major Fc glycans of rIgGs contain 0 or 1 or 2 (G0, G1 and G2, respectively) terminal galactose residues as non-reducing termini and their relative proportions may vary depending on the cell culture conditions in which they were expressed. Since glycosylation is strongly associated with antibody effector functions and terminal galactosylation may affect some of those functions, a panel of commercially available therapeutic rIgGs expressed in CHO cells and mouse myeloma cells were examined for their galactosylation patterns. The results suggest that the rIgGs expressed in CHO cells are generally less galactosylated compared to the rIgGs expressed in mouse myeloma cells. Accordingly, rIgGs produced in CHO cells tend to contain higher levels of G0 glycans compared with rIgGs produced in mouse myeloma cell lines. Despite the apparent wide variability in galactose content, adverse events or safety issues have not been associated with specific galactosylation patterns of therapeutic antibodies. Nevertheless, galactosylation may have an effect on the mechanisms of action of some therapeutic antibodies (e.g., effector pathways) and hence further studies to assess effects on product efficacy may be warranted for such antibodies. For antibodies that do not require effector functions for biological activity, however, setting a narrow specification range for galactose content may be unnecessary.  相似文献   

20.
Controlled glycosylation of therapeutic antibodies in plants   总被引:5,自引:0,他引:5  
Recombinant therapeutic monoclonal antibodies (mAb) can be expressed, assembled, and glycosylated in plants. Transgenic plants, producing anti-rabies mAb and anti-colorectal cancer mAb, were obtained from Agrobacterium-mediated transformation. The heavy chain (HC) of anti-rabies mAb was fused to the Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention signal whereas the HC of anti-colorectal cancer mAb was not fused to the KDEL sequence. Gel release of glycans and detection by high-performance liquid chromatography (HPLC), together with computer assisted analysis and matrix-assisted laser desorption/ionization time-of-flight (MALD-TOF) mass spectrometry, revealed that the plant-derived anti-rabies mAb with KDEL contained mainly oligomannose type N-glycans while the plant-derived anti-colorectal cancer mAb carried mainly biantennary glycans with and without a pentose sugar, that is thought to be xylose. This finding indicates that the KDEL sequence can affect the N-glycosylation processing of antibody in plant cells. The plant-derived mAbs with addition of a KDEL sequence did not contain any of the known antigenic glycan epitopes that are frequently found in other plant glycans or in mammalian-derived mAbs. The altered glycosylation on both plant-derived mAbs did not affect the activities that are required for therapy. These results indicate that plant genetic engineering could provide an effective and inexpensive means to control the glycosylation of therapeutic proteins such as mAbs, by the addition of a KDEL signal as a regulatory element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号