首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general.  相似文献   

2.
The DVD-Ig™ protein is a dual-specific immunoglobulin. Each of the two arms of the molecule contains two variable domains, an inner variable domain and an outer variable domain linked in tandem, each with binding specificity for different targets or epitopes. One area of on-going research involves determining how the proximity of the outer variable domain affects the binding of ligands to the inner variable domain. To explore this area, we prepared a series of DVD-Ig proteins with binding specificities toward TNFα and an alternate therapeutic target. Kinetic measurements of TNFα binding to this series of DVD-Ig proteins were used to probe the effects of variable domain position and linker design on ligand on- and off-rates. We found that affinities for TNFα are generally lower when binding to the inner domain than to the outer domain and that this loss of affinity is primarily due to reduced association rate. This effect could be mitigated, to some degree, by linker design. We show several linker sequences that mitigate inner domain affinity losses in this series of DVD-Ig proteins. Moreover, we show that single chain proteolytic cleavage between the inner and outer domains, or complete outer domain removal, can largely restore inner domain TNFα affinity to that approaching the reference antibody. Taken together, these results suggest that a loss of affinity for inner variable domains in this set of DVD-Ig proteins may be largely driven by simple steric hindrance effects and can be reduced by careful linker design.Key words: dual variable domain immunoglobulin, DVD-Ig, immunotherapy, variable domain, antibody engineering, dual-specific, linker  相似文献   

3.
《MABS-AUSTIN》2013,5(5):487-494
The DVD-IgTM protein is a dual-specific immunoglobulin. Each of the two arms of the molecule contains two variable domains, an inner variable domain and an outer variable domain linked in tandem, each with binding specificity for different targets or epitopes. One area of on-going research involves determining how the proximity of the outer variable domain affects the binding of ligands to the inner variable domain. To explore this area, we prepared a series of DVD-Ig proteins with binding specificities toward TNFα and an alternate therapeutic target. Kinetic measurements of TNFα binding to this series of DVD-Ig proteins were used to probe the effects of variable domain position and linker design on ligand on- and off-rates. We found that affinities for TNFα are generally lower when binding to the inner domain than to the outer domain and that this loss of affinity is primarily due to reduced association rate. This effect could be mitigated, to some degree, by linker design. We show several linker sequences that mitigate inner domain affinity losses in this series of DVD-Ig proteins. Moreover, we show that single chain proteolytic cleavage between the inner and outer domains, or complete outer domain removal, can largely restore inner domain TNFα affinity to that approaching the reference antibody. Taken together, these results suggest that a loss of affinity for inner variable domains in this set of DVD-Ig proteins may be largely driven by simple steric hindrance effects and can be reduced by careful linker design.  相似文献   

4.
The extracellular region of CD6 consists of three scavenger receptor cysteine-rich (SRCR) domains and binds activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily (IgSF). Residues important for the CD6-ALCAM interaction have previously been identified by mutagenesis. A total of 22 CD6 residues were classified according to their importance for anti-CD6 monoclonal antibody (mAb) and/or ALCAM binding. The three-dimensional structure of the SRCR domain of Mac-2 binding protein has recently been determined, providing a structural prototype for the SRCR protein superfamily. This has made a thorough three-dimensional analysis of CD6 mutagenesis and mAb binding experiments possible. Mutation of buried residues compromised both mAb and ALCAM binding, consistent with the presence of structural perturbations. However, several residues whose mutation affected both mAb and ALCAM binding or, alternatively, only ligand binding were found to map to the surface in the same region of the domain. This suggests that the CD6 ligand binding site and epitopes of tested mAbs overlap and provides an explanation for the finding that these mAbs effectively block ALCAM binding. An approximate molecular model of CD6 was used to delineate the ALCAM binding site.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089490050263Abbreviations ALCAM activated leukocyte cell adhesion molecule - CD6D3 third (membrane-proxi-mal) extracellular domain of CD6 - IgSF immunoglobulin superfamily - mAb monoclonal antibody - M2BP Mac-2 binding protein - SRCR scavenger receptor cysteine-rich domain - SRCRSF scavenger receptor cysteine-rich protein superfamily  相似文献   

5.
PECAM-1, a cell adhesion molecule of the immunoglobulin gene (Ig) superfamily, has been implicated in white cell transmigration, integrin activation on lymphocytes, and cell-cell adhesion. The purpose of this investigation was to identify specific regions of the PECAM-1 extracellular domain mediating these functions by identifying the location of epitopes of bioactive anti-PECAM-1 monoclonal antibodies. The binding regions of mAbs important in PECAM-1-mediated leukocyte transmigration (Hec 7.2 and 3D2) were mapped to N-terminal Ig-like domains. The epitopes of monoclonal antibodies that activated integrin function on lymphocytes were dispersed over the entire extracellular region, but those that had the strongest activating effect were preferentially localized to the N-terminus of the molecule. The binding regions of mAbs that blocked PECAM-1-mediated heterophilic L-cell aggregation were located either in Ig-like domain 2 (NIH31.4) or Ig-like domain 6 (4G6 and 1.2). Site-directed mutagenesis further pinpointed the epitope of the 4G6 mAb to a hexapeptide, CAVNEG, within Ig-like domain 6.

These results demonstrate that PECAM-1 contains multiple functional domains. Regions within N-terminal Ig-like domains appear to be required for transmigration. In contrast, two distinct regions were implicated in L-cell mediated heterophilic aggregation.  相似文献   

6.
Antigen binding immunoglobulin Fc fragments (Fcab) are generated by engineering loop regions in the CH3 domain of human IgG1 Fc. Variants of an Fcab specific for Her-2 were designed to display either enhanced (S239D:A330L:I332E) or diminished (L234A:L235A) binding affinities to the Fc receptor CD16a based on mutations described previously. The two mutant Fcab proteins demonstrated the expected modulation of CD16a binding. Interaction with recombinant or cell surface expressed Her-2 was unaffected in both mutants compared to the parental Fcab. Binding affinities for CD16a correlated with the ADCC-potencies of the Fcab variants. Additional studies indicated that the L234A:L235A variant Fcab had equivalent structural features as the unmodified Fcab since their DSC profiles were similar and antigen binding after re-folding upon partial heat denaturation had not changed. Introduction of the S239D:A330L:I332E mutations resulted in a significant reduction of the CH2 domain melting temperature, a moderate decrease of the thermal transition of the CH3 domain and lower antigen binding after thermal stress compared to the parental Fcab. We conclude that the known correlation between CD16a binding affinity and ADCC potency is also valid in Fcab proteins and that antigen specific Fcab molecules can be further engineered for fine tuning of immuno effector functions.  相似文献   

7.
Signal transduction through the interleukin-1 receptor (IL-1R) pathway mediates a strong pro-inflammatory response, which contributes to a number of human diseases such as rheumatoid arthritis. Within the IL-1 family, IL-1α and IL-1β are both agonistic ligands for IL-1R, whereas IL-1 receptor antagonist (IL-1ra) is an endogenous antagonist that binds to IL-R, but does not signal. Therefore, the ideal therapeutic strategy would be blocking both IL-1α and IL-1β, but not IL-1ra. However, due to low sequence homology between the three members of the family, it has been exceedingly difficult to identify potent therapeutic agents, e.g., monoclonal antibodies (mAbs), that selectively recognize both IL-1α and IL-1β, but not IL-1ra. Currently, several anti-IL-1 therapeutic agents in clinical development either inhibit only IL-1β (i.e., anti-IL-1β mAb), or recognize all three ligands (i.e., anti-IL-1R mAb or IL-1R Trap). We have recently developed a novel dual variable domain immunoglobulin (or DVD-Ig™) technology that enables engineering the distinct specificities of two mAbs into a single functional, dual-specific, tetravalent IgG-like molecule. Based on this approach, we have developed anti-human IL-1α/β DVD-Ig™ molecules using several pairs of monoclonal antibodies with therapeutic potential, and present a case study for optimal design of a DVD-Ig™ agent for a specific target pair combination.Key words: DVD-Ig, dual variable domain immunoglobulin, interleukin-1, rheumatoid arthritis, variable domain, linker, antibody engineering, dual-specific antibody  相似文献   

8.
The pyoverdine outer membrane receptor, FpvA, from Pseudomonas aeruginosa translocates ferric pyoverdine across the outer membrane through an energy consuming mechanism using the proton motive force and the TonB-ExbB-ExbD energy transducing complex from the inner membrane. We solved the crystal structure of the full-length FpvA bound to iron-pyoverdine at 2.7 A resolution. Signal transduction to an anti-sigma protein of the inner membrane and to TonB-ExbB-ExbD involves the periplasmic domain, which displays a beta-alpha-beta fold composed of two alpha-helices sandwiched by two beta-sheets. One iron-pyoverdine conformer is bound at the extracellular face of FpvA, revealing the conformer selectivity of the binding site. The loop that contains the TonB box, involved in interactions with TonB, and connects the signaling domain to the plug domain of FpvA is not defined in the electron density following the binding of ferric pyoverdine. The high flexibility of this loop is probably necessary for signal transduction through the outer membrane.  相似文献   

9.
In this article, a systematic workflow was formulated and implemented to understand selectivity differences and preferred binding patches for bispecific monoclonal antibodies (mAbs) and their parental mAbs on three multimodal cation exchange resin systems. This workflow incorporates chromatographic screening of the parent mAbs and their fragments at various pH followed by surface property mapping and protein footprinting using covalent labeling followed by liquid chromatography–mass spectrometry analysis. The chromatography screens on multimodal resins with the intact mAbs indicated enhanced selectivity as compared to single-mode interaction systems. While the bispecific antibody (bsAb) eluted between the two parental mAbs on most of the resins, the retention of the bispecific transitioned from co-eluting with one parental mAb to the other parental mAb on Capto MMC. To investigate the contribution of different domains, mAb fragments were evaluated and the results indicated that the interactions were likely dominated by the Fab domain at higher pH. Protein surface property maps were then employed to hypothesize the potential preferred binding patches in the solvent-exposed regions of the parental Fabs. Finally, protein footprinting was carried out with the parental mAbs and the bsAb in the bound and unbound states at pH 7.5 to identify the preferred binding patches. Results with the intact mAb analysis supported the hypothesis that interactions with the resins were primarily driven by the residues in the Fab fragments and not the Fc. Furthermore, peptide mapping data indicated that the light chain may be playing a more important role in the higher binding of Parent A as compared with Parent B in these resin systems. Finally, results with the bsAb indicated that both halves of the molecule contributed to binding with the resins, albeit with subtle differences as compared to the parental mAbs. The workflow presented in this paper lays the foundation to systematically study the chromatographic selectivity of large multidomain molecules which can provide insights into improved biomanufacturability and expedited downstream bioprocess development.  相似文献   

10.
The Moraxella IgD-binding protein MID/Hag is an oligomeric autotransporter   总被引:1,自引:0,他引:1  
The immunoglobulin D (IgD)-binding protein MID/Hag of the human respiratory pathogen Moraxella catarrhalis is an outer membrane protein of approximately 200kDa belonging to the autotransporter family. MID also functions as an adhesin and hemagglutinin. In the present paper, the ultrastructure of MID was mapped. Using a series of Escherichia coli transformants, the last 210 aa of the C-terminal region were shown to translocate protein MID through the outer membrane suggesting that MID has a beta-barrel structure comprising of 10 transmembrane beta-sheets. Electron microscopy mapping with gold-labelled specific antibodies, and partial unravelling using guanidine hydrochloride showed that the rest of the MID protein forms an approximately 120nm long, fibrillar structure in which the individual monomers fold back on themselves to expose a globular distal domain at their tips comprising both the IgD-binding (MID962-1200) and adhesive (MID764-913) regions. This positions their N-termini close to the C-terminal membrane spanning domains. Mass measurements by scanning transmission electron microscopy (STEM) verified that the MID molecule is an oligomer.  相似文献   

11.
The neuronal cell adhesion molecule axonin-1 is composed of six immunoglobulin and four fibronectin type III domains. Axonin-1 promotes neurite outgrowth, when presented as a substratum for neurons in vitro, via a neuronal receptor that has been identified as the neuron-glia cell adhesion molecule, NgCAM, based on the blocking effect of polyclonal antibodies directed to NgCAM. Here we report the identification of axonin-1 domains involved in NgCAM binding. NgCAM-conjugated microspheres were tested for binding to COS cells expressing domain deletion mutants of axonin-1. In addition, monoclonal antibodies directed to axonin-1 were assessed for their ability to block the axonin-1-NgCAM interaction, and their epitopes were mapped using the domain deletion mutants. The results suggest that the four amino-terminal immunoglobulin domains of axonin-1 form a domain conglomerate which is necessary and sufficient for NgCAM binding. Surprisingly, NgCAM binding to membrane-bound axonin-1 was increased strongly by deletion of the fifth or sixth immunoglobulin domains of axonin-1. Based on these results and on negative staining electron microscopy, we propose a horseshoe-shaped domain arrangement of axonin-1 that obscures the NgCAM binding site. Neurite outgrowth studies with truncated forms of axonin-1 show that axonin-1 is a neurite outgrowth-promoting substratum in the absence of the NgCAM binding site.  相似文献   

12.
We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin-binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze-fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested higher cholesterol in the inner segment than in the outer segment plasma membrane may help direct newly inserted photopigment molecules to the outer segment.  相似文献   

13.
Of the two known "complex" flagellar filaments, those of Pseudomonas are far more flexible than those of Rhizobium. Their diameter is larger and their outer three-start ridges and grooves are more prominent. Although the symmetry of both complex filaments is similar, the polymer's linear mass density and the flagellin molecular mass of the latter are lower. A recent comparison of a three-dimensional reconstruction of the filament of Pseudomonas rhodos to that of Rhizobium lupini indicates that the outer flagellin domain (D3) is missing in R.lupini. Here, we concentrate on the structure of the inner core of the filament of P.rhodos using field emission cryo-negative staining electron microscopy and a hybrid helical/single particle reconstruction technique. Averaging 158 filaments caused the density band corresponding to the radial spokes to nearly average out due to their variability and inferred flexibility. Treating the Z=0 cross-sections through the aligned individual three-dimensional density maps as images, classifying them by correspondence analysis (using a mask containing the radial spokes domain) and re-averaging the subclasses (using helical reconstruction techniques) allowed a recovery of the radial spokes and resolved the alpha-helices in domain D0 and the triple alpha-helical bundles in domain D1 at a resolution of 1/7A(-1). Although the perturbed components of the helical lattice are present along the entire filament's radius, the interior of the complex filament is similar to that of the plain one, whereas it's exterior is altered. Reconstructions of vitrified and cryo-negatively stained plain, right-handed filaments of Salmonella typhimurium SJW1655 prepared and imaged under conditions identical with those used for P.rhodos confirm the similarity of their inner cores and that the secondary structures in the interior of the flagellar filament can, under critical conditions of image recording and correction, be resolved in negative stain.  相似文献   

14.
A novel cation-exchange resin, Eshmuno™ S, was compared to Fractogel® SO3 (M) and Toyopearl GigaCap S-650M. The stationary phases have different base matrices and carry specific types of polymeric surface modifications. Three monoclonal antibodies (mAbs) were used as model proteins to characterize these chromatographic resins. Results from gradient elutions, stirred batch adsorptions and confocal laser scanning microscopic investigations were used to elucidate binding behavior of mAbs onto Eshmuno™ S and Fractogel® SO3 and the corresponding transport mechanisms on these two resins. The number of charges involved in mAb binding for Eshmuno™ S is lower than for Fractogel® SO3, indicating a slightly weaker electrostatic interaction. Kinetics from batch uptake experiments are compared to kinetic data obtained from confocal laser scanning microscopy images. Both experimental approaches show an accelerated protein adsorption for the novel stationary phase. The influence of pH, salt concentrations and residence times on dynamic binding capacities was determined. A higher dynamic binding capacity for Eshmuno™ S over a wider range of pH values and residence times was found compared to Fractogel® SO3 and Toyopearl GigaCap S-650M. The capture of antibodies from cell culture supernatant, as well as post-protein A eluates, were analyzed with respect to their host cell protein (hcp) removal capabilities. Comparable or even better hcp clearance was observed at much higher protein loading for Eshmuno™ S than Fractogel® SO3 or Toyopearl GigaCap S-650M.Key words: ion-exchange chromatography, dynamic binding capacity, tentacle surface modification, linear gradient elution, hcp removal  相似文献   

15.
The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs.  相似文献   

16.
Five adherence-inhibiting monoclonal antibodies (mAbs) were used for topological mapping of the binding sites of the 169 kDa membrane-integrated adhesin of Mycoplasma pneumoniae. Antibody binding sites were characterized using overlapping synthetic octapeptides. Three regions of the protein seem to be involved in adherence: the N-terminal region [N-reg, epitopes beginning at amino acid (aa) 1 to aa 14 and aa 231 to aa 238, respectively]; a domain (D1) approximately in the middle of the molecule (beginning at aa 851 to aa 858 and aa 921 to aa 928); and a domain (D2) closer to the C-terminus (beginning at aa 1303 to aa 1310, aa 1391 to aa 1398 and aa 1407 to aa 1414). Each of the mAbs P1.26 and P1.62 reacted with two primary amino acid sequences. Both antibodies bound to the D1 region, but mAb P1.62 showed additional binding to a sequence (aa 231 to aa 238) near the N-terminus, and mAb P1.26 reacted with a second epitope in the D2 domain (aa 1303 to aa 1310). Such dual binding by the two antibodies suggests that in the native protein the epitopes are composed of two sequences which are located on two different sites of the molecule (D1/N-reg and D1/D2, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A monoclonal antibody generated against hamster epididymal spermatozoa and recognizing an antigen within the acrosome was used in conjunction with FITC-antimouse immunoglobulin as a marker of the human acrosome during sperm development, capacitation, and the acrosome reaction. The specificity of binding of the monoclonal antibody was assessed using immunolocalization by epi-fluorescence and electron microscopy. Immunofluorescence revealed that antibody bound over the entire anterior acrosome in hamster and human spermatozoa. Ultrastructural localization indicated that antigen was predominantly present on the inner face of the outer acrosomal membrane and within the acrosomal content. Qualitative specificity was studied using a highly purified preparation of hamster acrosomes in an enzyme-linked immunosorbent assay. Since the antibody rapidly visualized human acrosomes, it was used to detect abnormal acrosome morphology of mature spermatozoa and to mark spermatids present in the ejaculate. During incubation in capacitating medium, changes in the immunofluorescence of live or methanol fixed spermatozoa were correlated with incubation interval and the ability of spermatozoa to fuse with zona-free hamster oocytes. Spermatozoa bound to zona-free hamster oocytes displayed no fluorescence, confirming that acrosome loss occurred before spermatozoa attached to the vitellus.  相似文献   

18.
A monoclonal antibody (3D6) was produced which reacted only with Brucella sonicated cell extracts that had been lysozyme-treated after sonication. The monoclonal antibody (mAb) reacted with the three major outer-membrane proteins (OMPs) of B. melitensis B115 in Western blots. A large number of reactive bands ranging from 12 to 43 kDa were present in lysozyme-treated Escherichia coli and Yersinia enterocolitica sonicated cell extracts. In a latex agglutination inhibition immunoassay, mAb 3D6 showed better reactivity with purified peptidoglycan (PG) of B. melitensis B115 than with that of Escherichia coli. This mAb was also used in immunogold electron microscopy with whole Brucella cells and sections. No binding was observed on whole cells and immunogold labelling in sections was observed close to the outer membrane, in the periplasmic space and in the cytoplasm. These findings indicate that mAb 3D6 is specific for PG subunits. Immunoblot analysis of B. melitensis B115 rough sonicated cell extracts after SDS-PAGE, with or without lysozyme treatment, was performed using mAbs specific for Brucella OMPs of molecular masses of 10, 16.5, 19, 25-27, 31-34, 36-38 and 89 kDa, for PG and for rough lipopolysaccharide (R-LPS) and smooth lipopolysaccharide (S-LPS). mAbs specific for the 25-27, 31-34 and 36-38 kDa OMPs reacted with three to six bands. All of them except the band of lowest molecular mass reacted with the PG-specific mAb and not with R-LPS- and S-LPS-specific mAbs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs.  相似文献   

20.
PEGylation of antibodies is known to increase their half-life in systemic circulation, but nothing is known regarding whether PEGylation can improve the inhibitory potency of antibodies against target receptors. In this paper, we have examined this question using antibodies directed to Sialoadhesin (Sn), a macrophage-restricted adhesion molecule that mediates sialic acid dependent binding to different cells. Anti-Sn monoclonal antibodies (mAbs), SER-4 and 3D6, were conjugated to PEG 5 kDa or and PEG 20 kDa, resulting in the incorporation of up to 3 molecules of PEG per mAb molecule. Following purification of PEGylated mAbs by anion exchange chromatography, it was shown that PEGylation had little or no effect on antigen binding activity but led to a dramatic increase in inhibitory potency that was proportional to both the size of the PEG and the degree of derivatization. Thus, PEGylation of antibodies directed to cell surface receptors could be a powerful approach to improve the therapeutic efficacy of antibodies, not only by increasing their half-life in vivo, but also by increasing their inhibitory potency for blocking receptor-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号