共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins are a major constituent of cells with specific biological functions. Besides the primary structure that is simply the sequence of amino acids that comprise a protein, the secondary structure represents the first step of folding defining its general conformation. The biological functions of proteins are directly dependent on the acquisition of their conformation. The same protein can have different stable states, which may participate with different functions in the cell.The amyloid diseases comprise Alzheimer''s and Parkinson''s diseases, type II diabetes mellitus and systemic amyloidosis. Amyloid fibers are insoluble, resistant to proteolysis and show an extremely high content of β-sheet, in a very similar structure to the one observed among prion rods, associated to the transmissible spongiform encephalopathies. All these diseases are “infectious” in the sense that misfolded β-sheeted conformers formed in a nucleation process in which preformed metastable oligomer acts as a seed to convert a normal isoform into an abnormal protein with a misfolded conformation. Only prion infections have a proven infectivity in a microbiological sense; some recent observations, however, detected the transmissibility of systemic amyloidosis by a prion-like mechanism among mice. Prion diseases and amyloidosis present many similar aspects of the so-called conformational diseases; according to this interpretation the prion infections could be considered as a form of transmissible cerebral amyloidosis.Key Words: conformational diseases, prion diseases, amyloidoses 相似文献
2.
3.
Bruce Chesebro Brent Race Kimberly Meade-White Rachel LaCasse Richard Race Mikael Klingeborn James Striebel David Dorward Gillian McGovern Martin Jeffrey 《PLoS pathogens》2010,6(3)
Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer''s disease. 相似文献
4.
Emmanuel A. Asante Jacqueline M. Linehan Michelle Smidak Andrew Tomlinson Andrew Grimshaw Asif Jeelani Tatiana Jakubcova Shyma Hamdan Caroline Powell Sebastian Brandner Jonathan D. F. Wadsworth John Collinge 《PLoS pathogens》2013,9(9)
Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrPSc), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP (CtmPrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrPSc was demonstrated in the brains of recipient transgenic mice. This PrPSc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established. 相似文献
5.
6.
Reed B Wickner Herman K Edskes Frank Shewmaker Toru Nakayashiki Abbi Engel Linsay McCann Dmitry Kryndushkin 《朊病毒》2007,1(2):94-100
Prions (infectious proteins) analogous to the scrapie agent have been identified in Saccharomyces cerevisiae and Podospora anserina based on their special genetic characteristics. Each is a protein acting as a gene, much like nucleic acids have been shown to act as enzymes. The [URE3], [PSI+], [PIN+] and [Het-s] prions are self-propagating amyloids of Ure2p, Sup35p, Rnq1p and the HET-s protein, respectively. The [β] and [C] prions are enzymes whose precursor activation requires their own active form. [URE3] and [PSI+] are clearly diseases, while [Het-s] and [β] carry out normal cell functions. Surprisingly, the prion domains of Ure2p and Sup35p can be randomized without loss of ability to become a prion. Thus amino acid content and not sequence determine these prions. Shuffleability also suggests amyloids with a parallel in-register β-sheet structure.Key Words: Ure2, Sup35, Rnq1, HETs, PrP, prion, amyloid 相似文献
7.
Florent Laferrière Philippe Tixador Mohammed Moudjou Jér?me Chapuis Pierre Sibille Laetitia Herzog Fabienne Reine Emilie Jaumain Hubert Laude Human Rezaei Vincent Béringue 《PLoS pathogens》2013,9(10)
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions. 相似文献
8.
9.
10.
Myriam Crapeau Christelle Marchal Christophe Cullin Laurent Maillet 《Molecular biology of the cell》2009,20(8):2286-2296
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2pSp) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2pSp overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2pSp and of S. cerevisiae Ure2p (Ure2pSc) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2pSp aggregates faster than Ure2pSc. Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2pSc than with Ure2pSp. Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2pSc. Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2pSp might be more sensitive to such effects than Ure2pSc. 相似文献
11.
12.
13.
Pawel Piotr Liberski 《Molecular neurobiology》1994,8(1):67-77
Alzheimer’s disease, a prototypic nontransmissible cerebral amyloidosis, has no adequate experimental model. Several pathogenetic events, however, may be modeled and accurately studied in the transmissible cerebral amyloidoses of kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and scrapie. The common neuropathological denominator in both types of cerebral amyloidoses is the presence of stellate kuru plaques, senile plaques, and pure neuritic plaques. These amyloid plaques consist of amyloid fibers, dystrophic neurites, and reactive astrocytes in different proportions. Microglial cells, which are regarded as amyloid producer/processor cells in Alzheimer’s disease, may play the same function in the transmissible cerebral amyloidoses. In both transmissible and nontransmissible amyloidoses, the impairment of axonal transport leads to accumulation of abnormally phosphorylated cytoskeleton proteins (such as neurofilament proteins and microtubule-associated protein τ), which eventually produce dystophic neurites observed as parts of plaque or as isolated pathological structures. 相似文献
14.
Christian Wasmer Antoine Loquet Jason Greenwald Anja Böckmann Beat H. Meier 《Journal of molecular biology》2009,394(1):119-483
The prion hypothesis states that it is solely the three-dimensional structure of the polypeptide chain that distinguishes the prion and nonprion forms of the protein. For HET-s, the atomic-resolution structure of the isolated prion domain HET-s(218-289), consisting of a highly ordered triangular cross-β arrangement, is known. Here we present a solid-state NMR study of fibrils of the full-length HET-s prion in which we compare their spectra with spectra from isolated C-terminal prion domain fibrils and the crystalline N-terminal globular domain HET-s(1-227). The spectra reveal unequivocally that the highly ordered structure of the isolated prion domain HET-s(218-289) is conserved in the context of the full-length fibrils investigated here. However, the globular domain loses much of its tertiary structure while partly retaining its secondary structure, thus exhibiting behavior reminiscent of a molten globule. Flexible residues that may constitute the linker connecting the two domains are detected using INEPT (insensitive nuclei enhanced by polarization transfer) spectroscopy. Based on our data, we propose a structural model that is in line with a general model developed for amyloid fibrils built from a cross-β core decorated with globular domains. The loss of structure in the HET-s globular domain sharply contrasts with the behavior observed for fibrils of Ure2p and suggests that there is considerable structural diversity in the fibrils of globular-domain-containing prions despite their similar appearances at the microscopic level. 相似文献
15.
Stefanie Ohlig Ute Pickhinke Svetlana Sirko Shyam Bandari Daniel Hoffmann Rita Dreier Pershang Farshi Magdalena G?tz Kay Grobe 《The Journal of biological chemistry》2012,287(52):43708-43719
Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins. 相似文献
16.
17.
18.
While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient''s post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition. 相似文献
19.
20.
小菌落突变株是一种具有独特表型及致病特征且生长缓慢的细菌亚群。在表型上,小菌落突变株表现为生长率低、菌落形态不规则及生化特性异常,这使得临床微生物学家在鉴定时遇到了挑战。在临床上,小菌落突变株比相应的野生株更能持续存在于哺乳动物细胞中,且对抗生素更不敏感。当宿主细胞形成应急的保护性环境时,小菌落突变株会引发隐性或复发性感染。这篇综述涵盖了小菌落突变株相关表型、遗传及临床上的特征,重点描述目前研究最多的葡萄球菌。 相似文献