首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Development of biosimilar proteins is the fastest growing sector in the biopharmaceutical industry, as patents for the top 10 best-selling biologics will expire within one decade. The world’s first biosimilar of infliximab, Remsima® (CT-P13) made by Celltrion, was approved by the Committee for Medicinal Products for Human Use (CHMP) of European Medicine Agency (EMA) in June 2013. This has ignited competition between related companies for prior occupation of the global market on blockbuster biologics. However, to achieve approval for biosimilars, developing companies face many hurdles in process development, manufacturing, analysis, clinical trials, and CMC (chemical, manufacturing and controls) documentation. Recent evolutionary progress in science, engineering, and process technology throughout the biopharmaceutical industry supports to show similarity between originator and biosimilar products. The totality of evidence has been able to demonstrate the quality, efficacy, and safety of biosimilars whereas a lack of interchangeability and international standards has to be addressed. Further understanding of the timing importance by regulatory agencies will be key to maximizing the value of biosimilars.  相似文献   

2.
A biosimilar is a biological medicinal product that is comparable to a reference medicinal product in terms of quality, safety, and efficacy. SB4 was developed as a biosimilar to Enbrel® (etanercept) and was approved as Benepali®, the first biosimilar of etanercept licensed in the European Union (EU). The quality assessment of SB4 was performed in accordance with the ICH comparability guideline and the biosimilar guidelines of the European Medicines Agency and Food and Drug Administration. Extensive structural, physicochemical, and biological testing was performed with state-of-the-art technologies during a side-by-side comparison of the products. Similarity of critical quality attributes (CQAs) was evaluated on the basis of tolerance intervals established from quality data obtained from more than 60 lots of EU-sourced and US-sourced etanercept. Additional quality assessment was focused on a detailed investigation of immunogenicity-related quality attributes, including hydrophobic variants, high-molecular-weight (HMW) species, N-glycolylneuraminic acid (NGNA), and α-1,3-galactose. This comprehensive characterization study demonstrated that SB4 is highly similar to the reference product, Enbrel®, in structural, physicochemical, and biological quality attributes. In addition, the levels of potential immunogenicity-related quality attributes of SB4 such as hydrophobic variants, HMW aggregates, and α-1,3-galactose were less than those of the reference product.  相似文献   

3.
《MABS-AUSTIN》2013,5(2):209-217
Limited access for high-quality biologics due to cost of treatment constitutes an unmet medical need in the United States (US) and other regions of the world. The term “biosimilar” is used to designate a follow-on biologic that meets extremely high standards for comparability or similarity to the originator biologic drug that is approved for use in the same indications. Use of biosimilar products has already decreased the cost of treatment in many regions of the world, and now a regulatory pathway for approval of these products has been established in the US. The Food and Drug Administration (FDA) led the world with the regulatory concept of comparability, and the European Medicines Agency (EMA) was the first to apply this to biosimilars. Patents on the more complex biologics, especially monoclonal antibodies, are now beginning to expire and biosimilar versions of these important medicines are in development. The new Biologics Price Competition and Innovation Act allows the FDA to approve biosimilars, but it also allows the FDA to lead on the formal designation of interchangeability of biosimilars with their reference products. The FDA’s approval of biosimilars is critical to facilitating patient access to high-quality biologic medicines, and will allow society to afford the truly innovative molecules currently in the global biopharmaceutical industry’s pipeline.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):1163-1177
Remsima® (infliximab) was recently approved as the world's first biosimilar monoclonal antibody (mAb) in both the European Union and Korea. To achieve this, extensive physicochemical characterization of Remsima® in relation to Remicade® was conducted in order to demonstrate the highly similar properties between the two molecules. A multitude of state-of-the-art analyses revealed that Remsima® has identical primary as well as indistinguishable higher order structures compared with the original product. Monomer and aggregate contents of Remsima® were also found to be comparable with those of Remicade®. In terms of charge isoforms, although Remsima® was observed to contain slightly less basic variants than the original antibody, the difference was shown to be largely due to the presence of C-terminal lysine. On the other hand, this lysine was found to be rapidly clipped inside serum in vitro and in vivo, suggesting it has no effect on the biological potency or safety of the drug. Analysis of the glycan contents of the antibodies showed comparable glycan types and distributions. Recent results of clinical studies have further confirmed that the two antibody products are highly similar to each other. Based on this research as well as previous clinical and non-clinical comparability studies, Remsima® can be considered as a highly similar molecule to Remicade® in terms of physicochemical properties, efficacy, and safety for its final approval as a biosimilar product to Remicade®.  相似文献   

5.
Biosimilars are biological medicinal products that contain a version of the active substance of an already authorised original biological medicinal product (the innovator or reference product). The first approved biosimilar medicines were small proteins, and more recently biosimilar versions of innovator monoclonal antibody (mAb) drugs have entered development as patents on these more complex proteins expire. In September 2013, the first biosimilar mAb, infliximab, was authorised in Europe. In March 2015, the first biosimilar (Zarxio?, filgrastim-sndz, Sandoz) was approved by the US Food and Drug Administration; however, to date no mAb biosimilars have been approved in the US. There are currently major differences between how biosimilars are regulated in different parts of the world, leading to substantial variability in the amount of in vivo nonclinical toxicity testing required to support clinical development and marketing of biosimilars. There are approximately 30 national and international guidelines on biosimilar development and this number is growing. The European Union's guidance describes an approach that enables biosimilars to enter clinical trials based on robust in vitro data alone; in contrast, the World Health Organization's guidance is interpreted globally to mean in vivo toxicity studies are mandatory.

We reviewed our own experience working in the global regulatory environment, surveyed current practice, determined drivers for nonclinical in vivo studies with biosimilar mAbs and shared data on practice and study design for 25 marketed and as yet unmarketed biosimilar mAbs that have been in development in the past 5y. These data showed a variety of nonclinical in vivo approaches, and also demonstrated the practical challenges faced in obtaining regulatory approval for clinical trials based on in vitro data alone. The majority of reasons for carrying out nonclinical in vivo studies were not based on scientific rationale, and therefore the authors have made recommendations for a data-driven approach to the toxicological assessment of mAb biosimilars that minimises unnecessary use of animals and can be used across all regions of the world.  相似文献   

6.
Limited access for high-quality biologics due to cost of treatment constitutes an unmet medical need in the US and other regions of the world. The term “biosimilar” is used to designate a follow-on biologic that meets extremely high standards for comparability or similarity to the originator biologic drug that is approved for use in the same indications. Use of biosimilar products has already decreased the cost of treatment in many regions of the world and now a regulatory pathway for approval of these products has been established in the US. The Food and Drug Administration (FDA) led the world with the regulatory concept of comparability and the European Medicines Agency (EMA) was the first to apply this to biosimilars. Patents on the more complex biologics, especially monoclonal antibodies, are now beginning to expire and biosimilar versions of these important medicines are in development. The new Biologics Price Competition and Innovation Act (BPCIA) allows the FDA to approve biosimilars and allows the FDA to lead on the formal designation of interchangeability of biosimilars with their reference products. The FDA''s approval of biosimilars is critical to facilitating patient access to high-quality biologic medicines and will allow society to afford the truly innovative molecules currently in the global biopharmaceutical industry''s pipeline.Key words: monoclonal antibodies (mAbs), biosimilars, recombinant biopharmaceuticals  相似文献   

7.
Arato T  Yamaguchi T 《Biologicals》2011,39(5):289-292
To share the experience of reviewing clinical data required for the licensing of follow-on biologic products (biosimilar products and similar biotherapeutical products as EU and WHO terminology, respectively) in Japan, the data packages of two follow-on biologics, "Somatropin BS s.c. [Sandoz] (Omnitrope?)" and "Epoetin alfa BS [JCR]", which have been recently approved in Japan according to the "Guidelines for the Quality, Safety and Efficacy Assurance of Follow-on Biologics" published on March 4th 2009, are described. The clinical data package and indication of Somatropin BS/Omnitrope(?) were different in each country. In case of Epoetin alfa BS [JCR], non-clinical and clinical data-package was different from those of erythropoietin biosimilar products approved in EU. Submission of post-marketing surveillance plans for both products was required. Even though there seem to be differences in data requirements by each national regulatory authority, the accumulation of experience will provide the rationale and consensus on how to design the clinical trials for follow-on biologics.  相似文献   

8.
Development of bio-therapeutics has exhibited exponential growth in China over the past decade. However, no biosimilar drug has been approved in China (CN) due to the lack of a national biosimilar regulatory guidance. HLX01, a rituximab biosimilar developed in China under European Medicines Agency biosimilar guidelines and requirements, was the first such drug submitted for regulatory review in China, and it is expected to receive approval there as a biosimilar product. To demonstrate the analytical similarities of HLX01, CN-rituximab (sourced in China but manufactured in Europe) and EU-rituximab (sourced and manufactured in Europe), an extensive 3-way physicochemical and functional similarity assessment using a series of orthogonal and state-of-the-art techniques was conducted, following the similarity requirement guidelines recently published by China’s Center for Drug Evaluation. The results of the similarity study showed an identical protein amino acid sequence and highly similar primary structures between HLX01 and the reference product (RP) MabThera®, along with high similarities in higher order structures, potency, integrity, purity and impurity profiles, biological and immunological binding functions, as well as degradation behaviors under stress conditions. In addition, HLX01 presented slightly lower aggregates and better photostability compared with the RP. Despite slight changes in relative abundance of glycan moieties and heavy chain C-terminal lysine modification, no differences in biological activities and immunological properties were observed between the RP and HLX01. In conclusion, HLX01 is highly similar to CN- and EU-sourced RP in terms of physicochemical properties and biological activities, suggesting similar product quality, ef?cacy, and safety. The regulatory requirements interpreted and applied towards the HLX01 marketing application sets a precedent for analytical similarity assessment of biosimilar products in China.  相似文献   

9.
Remsima? (infliximab) is the first biosimilar monoclonal antibody (mAb) approved by the European Medical Agency and the US Food and Drug Administration. Remsima? is highly similar to its reference product, Remicade®, with identical formulation components. The 2 products, however, are not identical; Remsima? has higher levels of soluble aggregates, C-terminal lysine truncation, and fucosylated glycans. To understand if these attribute differences could be amplified during forced degradation, solutions and lyophilized powders of the 2 products were subjected to stress at elevated temperature (40–60°C) and humidity (dry-97% relative humidity). Stress-induced aggregation and degradation profiles were similar for the 2 products and resulted in loss of infliximab binding to tumor necrosis factor and FcγRIIIa. Appearances of protein aggregates and hydrolysis products were time- and humidity-dependent, with similar degradation rates observed for the reference and biosimilar products. Protein powder incubations at 40°C/97% relative humidity resulted in partial mAb unfolding and increased asparagine deamidation. Minor differences in heat capacity, fluorescence, levels of subvisible particulates, deamidation and protein fragments were observed in the 2 stressed products, but these differences were not statistically significant. The protein solution instability at 60°C, although quite significant, was also similar for both products. Despite the small initial analytical differences, Remicade® and Remsima? displayed similar degradation mechanisms and kinetics. Thus, our results show that the 2 products are highly similar and infliximab's primary sequence largely defines their protein instabilities compared with the limited influence of small initial purity and glycosylation differences in the 2 products.  相似文献   

10.
11.
Biosimilars are protein products that are sufficiently similar to a biopharmaceutical already approved by a regulatory agency. Several biotechnology companies and generic drug manufacturers in Asia and Europe are developing biosimilars of tumor necrosis factor inhibitors and rituximab. A biosimilar etanercept is already being marketed in Colombia and China. In the US, several natural source products and recombinant proteins have been approved as generic drugs under Section 505(b)(2) of the Food, Drug, and Cosmetic Act. However, because the complexity of large biopharmaceuticals makes it difficult to demonstrate that a biosimilar is structurally identical to an already approved biopharmaceutical, this Act does not apply to biosimilars of large biopharmaceuticals. Section 7002 of the Patient Protection and Affordable Care Act of 2010, which is referred to as the Biologics Price Competition and Innovation Act of 2009, amends Section 351 of the Public Health Service Act to create an abbreviated pathway that permits a biosimilar to be evaluated by comparing it with only a single reference biological product. This paper reviews the processes for approval of biosimilars in the US and the European Union and highlights recent changes in federal regulations governing the approval of biosimilars in the US.  相似文献   

12.
13.
《MABS-AUSTIN》2013,5(6):1464-1473
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.  相似文献   

14.
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.  相似文献   

15.
《MABS-AUSTIN》2013,5(5):415-416
Therapeutic antibodies have captured substantial attention due to the relatively high rate at which these products reach marketing approval, and the subsequent commercial success they frequently achieve. In the 2000s, a total of 20 antibodies (18 full-length IgG and 2 Fab) were approved by the Food and Drug Administration (FDA) or European Medicines Agency (EMA). In the 2010s to date, an additional 3 antibodies (denosumab, belimumab, ipilimumab) have been approved and one antibody-drug conjugate (brentuximab vedotin) is undergoing regulatory review and may be approved in the US by August 30, 2011. However, a less heralded group of antibody-based therapeutics comprising proteins or peptides fused with an Fc is following the success of classical antibodies.  相似文献   

16.
17.
Biosimilars are biological products that are highly similar to existing products approved by health authorities. Demonstration of similarity starts with the comprehensive analysis of the reference product and its proposed biosimilar at the physicochemical and functional levels. Here, we report the results of a comparative analysis of a proposed biosimilar adalimumab MSB11022 and its reference product, Humira®. Three batches of MSB11022 and up to 23 batches of Humira® were analyzed by a set of state-of-the-art orthogonal methods. Primary and higher order structure analysis included N/C-terminal modifications, molecular weight of heavy and light chains, C-terminal lysine truncation, disulfide bridges, secondary and tertiary structures, and thermal stability. Purity ranged from 98.4%–98.8% for MSB11022 batches (N = 3) and from 98.4%–99.6% for Humira® batches (N = 19). Isoform analysis showed 5 isoform clusters within the pI range of 7.94–9.14 and 100% glycan site occupancy for both MSB11022 and Humira®. Functional analysis included Fab-dependent inhibition of tumor necrosis factor (TNF)-induced cytotoxicity in L929-A9 cell line and affinity to soluble and transmembrane forms of TNF, as well as Fc-dependent binding to Fcγ and neonatal Fc receptors and C1q complement proteins. All tested physicochemical and functional parameters demonstrated high similarity of MSB11022 and Humira®, with lower variability between MSB11022 and Humira® batches compared with variability within individual batches of Humira®. Based on these results, MSB11022 is anticipated to have safety and efficacy comparable to those of Humira®.  相似文献   

18.
Biosimilars 2.0     
《MABS-AUSTIN》2013,5(3):318-325
In the European Union, biosimilar products have been approved since 2006 under an abbreviated pathway that leverages their similarity to an existing “reference” biological product. The products approved to date are based on recombinant versions of endogenous proteins with well-understood structures and pharmacology, but complicated safety and immunogenicity profiles. The period during the 2000s that included the first reviews, approvals, sale and use of biosimilars, is referred to herein as “Biosimilars 1.0.” Over the next several years, a new and advanced tranche of biosimilars will be developed for complex reference products, including medicines used in the treatment of cancer and autoimmune diseases. A global market for biosimilars is developing, and this may well foreshadow the beginning of the second era of product development. This Biosimilars 2.0 period will likely be characterized by the development of complex products, global harmonization of standards, and the increasing demand for long-term monitoring of pharmaceuticals. The products developed in this period should exhibit high levels of fidelity to the reference products and should be rigorously evaluated in analytical, non-clinical and clinical comparisons. Additionally, Biosimilars 2.0 manufacturers should strive for transparency in their labels and take proactive strides to be accountable to providers and patients for the quality of their products. An important opportunity now exists for the healthcare community, industry and regulators to work in partnership to outline the appropriate standards for these products to facilitate increased access while meeting patients’ needs.  相似文献   

19.
Background aimsRegulatory agencies in the European Union (EU) and in the United States of America (USA) have adapted and launched regulatory pathways to accelerate patient access to innovative therapies, such as advanced therapy medicinal products (ATMPs). The aim of this study is to analyze similarities and differences between regulatory pathways followed by the approved ATMPs in both regions.MethodsA retrospective analysis of the ATMPs approved by EU and US regulatory agencies was carried out until May 31, 2020. Data were collected on the features and timing of orphan drug designation (ODD), scientific advice (SA), expedited program designation (EP), marketing authorization application (MAA) and marketing authorization (MA) for both regions.ResultsIn the EU, a total of fifteen ATMPs were approved (eight gene therapies, three somatic cell therapies, three tissue-engineered products and one combined ATMP), whereas in the USA, a total of nine were approved (five gene therapies and four cell therapies); seven of these were authorized in both regions. No statistical differences were found in the mean time between having the ODD or EP granted and the start of the pivotal clinical trial or MAA in the EU and USA, although the USA required less time for MAA assessment than the EU (mean difference, 5.44, P = 0.012). The MAA assessment was shorter for those products with a PRIME or breakthrough designation.. No differences were found in the percentage of ATMPs with expedited MAA assessment between the EU and the USA (33.3% versus 55.5%, respectively, P = 0.285) or in the time required for the MAA expedited review (mean difference 4.41, P = 0.105). Approximately half of the products in both regions required an Advisory Committee during the MAA review, and 60% required an oral explanation in the EU. More than half of the approved ATMPs (67% and 55.55% in the EU and the USA, respectively) were granted an ODD, 70% by submitting preliminary clinical data in the EU. The mean number of SA and protocol assistance per product conducted by the European Medicines Agency was 1.71 and 3.75, respectively, and only 13% included parallel advice with health technology assessment bodies. A total of 53.33% of the products conducted the first SA after the pivotal clinical study had started, reporting more protocol amendments. Finally, of the seven ATMPs authorized in both regions, the type of MA differed for only two ATMPs (28.6%), and four out of eight products non-commercialized in the USA had a non-standard MA in the EU.ConclusionsThe current approved ATMPs mainly target orphan diseases. Although EU and US regulatory procedures may differ, the main regulatory milestones reached by the approved ATMPs are similar in both regions, with the exception of the time for MAA evaluation, the number of authorized products in the regions and the type of authorization for some products. More global regulatory convergence might further simplify and expedite current ATMP development in these regions.  相似文献   

20.
The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab’s glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号