首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized a series of mouse monoclonal anti-CD4 and describe both their CD4 epitope recognition and Id expression. We also determined the V region gene sequences of these antibodies in an attempt to correlate epitope recognition and Id expression with V region sequence. All of these preparations recognize epitopes that cluster around the HIV gp120 binding site on the human CD4 molecule. However, we observed differences in epitope recognition among the anti-CD4 preparations, based on either competitive inhibition assays or functional assays, such as syncytium inhibition. Analysis of Id specificities using a polyclonal anti-Id generated against anti-Leu 3a indicated that five of the seven monoclonal anti-CD4 expressed a shared Id. Based on V region gene sequences, the V region kappa-chain (V[kappa]) from each of the seven antibodies was encoded by the V[kappa]21 gene family and expressed the J[kappa]4 gene segment. Those preparations that expressed the shared Id with anti-Leu 3a have virtually identical V[kappa] sequences, with a high degree of homology in the CDR. The VH region gene sequences of six of the seven antibodies also shared overall homology and appeared to be encoded by the J558 VH gene family. The seventh anti-CD4 VH region is encoded for by the VHGAM gene family. The majority of these antibodies used JH3 gene segment, although the JH2 and JH4 gene segments were also represented. In addition, several of these antibodies share a common sequence organization within their V-D-J joining regions that appears to involve N and P sequences to generate unique D segments. Together, these data suggest that differences in epitope recognition among the monoclonal anti-CD4 may reflect sequence variability primarily within the CDR3 region of both V[kappa] and VH. The basis for the detection of a shared Id most likely reflects the high degree of homology within the V[kappa] region sequences. In addition, these data, which are based on a limited analysis, suggest the possible restricted use of V region germ-line gene families in the secondary antibody response of BALB/c mice to specific epitopes on the human CD4 molecule.  相似文献   

2.
Isolation and characterization of the B-cell marker CD20   总被引:4,自引:0,他引:4  
Ernst JA  Li H  Kim HS  Nakamura GR  Yansura DG  Vandlen RL 《Biochemistry》2005,44(46):15150-15158
The integral membrane protein CD20 has been identified as an important therapeutic target in the treatment of non-Hodgkin's lymphoma (NHL). CD20 binding of many antibodies including the therapeutic antibody, rituximab, has been shown to be critically dependent upon the conformation of a loop structure between the third and fourth helical transmembrane regions. In this work, human and murine CD20 proteins expressed in Escherichia coli are shown to be localized with the cell membrane and are purified in nondenaturing detergent solutions. The purified human and murine CD20 proteins have a substantial helical structure as measured by circular dichroism spectroscopy. Only small changes in the secondary structure are observed following the reduction of CD20, with the addition of SDS, or after heating. The rituximab antibody is shown to bind to purified human CD20 with nanomolar affinity. Rituximab binding is abolished by reduction and alkylation of CD20, with data consistent with the proposed antibody epitope being within the disulfide-bonded loop formed between cysteine residues 167 and 183. Disulfide-bond-dependent antibody binding is partially recovered following reoxidation of reduced CD20. Antibody binding is unaffected by mutations of cysteines proposed to be in the intracellular domain of CD20. The affinities of intact rituximab and its Fab fragment to the isolated and purified CD20 are similar to the observed affinity of rituximab Fab for CD20 on the surface of B cells. However, the intact rituximab antibody shows much higher affinity for CD20 on B cells. This suggests that B cells display CD20 in such a way that allows for marked avidity effects to be observed, perhaps through cross-linking of CD20 monomers into lipid rafts, which limits receptor diffusion in the membrane. Such cross-linking may play a role in partitioning CD20 into lipid rafts and in enhancing antibody-dependent B-cell depletion activities of rituximab and other therapeutic anti-CD20 antibodies.  相似文献   

3.
The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCR-specific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and "hijack" the signaling potential of the BCR.  相似文献   

4.
The CD22 antigen is expressed on the surface of normal human B cells and some neoplastic B cell lines and tumors. Previous cross-blocking studies using a panel of monoclonal anti-CD22 antibodies have defined four epitope groups, termed A-D. In the present studies, we have further dissected the epitopes recognized by four monoclonal anti-CD22 antibodies using immunoprecipitation and cross-blocking techniques, immunofluorescence analyses with a variety of cell lines, and immunoperoxidase analyses of 36 normal human tissues. Two of the antibodies, HD6 and RFB4, have been described previously, and two, UV22-1 and UV22-2, are described in this report. Our studies indicate that the four monoclonal antibodies show unexpected complexities in their reactivity with CD22+ and CD22- cells and their reactivity with solubilized CD22 molecules. The four antibodies, which recognize epitopes defined previously as CD22-A and CD22-B, further subdivide these epitope clusters into four determinants, A1, A2, B1, and B2. Furthermore, only two of the antibodies, RFB4 and UV22-2, are B cell-specific. In summary, our data indicate that RFB4 and UV22-2 would be the antibodies of choice for constructing immunotoxins to treat B cell tumors.  相似文献   

5.
Certain antibodies from HIV-infected humans bind conserved transition state (CD4 induced [CD4i]) domains on the HIV envelope glycoprotein, gp120, and demonstrate extreme dependence on the formation of a gp120-human CD4 receptor complex. The epitopes recognized by these antibodies remain undefined although recent crystallographic studies of the anti-CD4i monoclonal antibody (MAb) 21c suggest that contacts with CD4 as well as gp120 might occur. Here, we explore the possibility of hybrid epitopes that demand the collaboration of both gp120 and CD4 residues to enable antibody reactivity. Analyses with a panel of human anti-CD4i MAbs and gp120-CD4 antigens with specific mutations in predicted binding domains revealed one putative hybrid epitope, defined by the human anti-CD4i MAb 19e. In virological and immunological tests, MAb 19e did not bind native or constrained gp120 except in the presence of CD4. This contrasted with other anti-CD4i MAbs, including MAb 21c, which bound unliganded, full-length gp120 held in a constrained conformation. Conversely, MAb 19e exhibited no specific reactivity with free human CD4. Computational modeling of MAb 19e interactions with gp120-CD4 complexes suggested a distinct binding profile involving antibody heavy chain interactions with CD4 and light chain interactions with gp120. In accordance, targeted mutations in CD4 based on this model specifically reduced MAb 19e interactions with stable gp120-CD4 complexes that retained reactivity with other anti-CD4i MAbs. These data represent a rare instance of an antibody response that is specific to a pathogen-host cell protein interaction and underscore the diversity of immunogenic CD4i epitope structures that exist during natural infection.  相似文献   

6.
CD20 is a B-cell-specific cell surface protein expressed on mature B lymphocytes and is a target for monoclonal antibody therapy for non-Hodgkin's lymphoma (NHL). Though clear clinical efficacy has been demonstrated with several anti-CD20 antibodies, the mechanisms by which the antibodies activate CD20 and kill cells remain unclear. Proposed mechanisms of action include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and induction of apoptosis. In this report we compared the activity of two anti-CD20 antibodies, Anti-B1 Antibody (tositumomab) and rituximab (C2B8), in a variety of cellular assays using a panel of B-cell lines. Anti-B1 Antibody showed a low level of activity in a CDC assay against complement-sensitive B-cell lines, Ramos and Daudi. We found that there is an inverse correlation between the expression of CD55 and CD59 and CDC mediated by either Anti-B1 Antibody or rituximab. Rituximab was more potent at inducing CDC when compared to Anti-B1 Antibody. Using Raji cells as target cells and human peripheral blood leukocytes as effector cells, Anti-B1 Antibody was a potent inducer of ADCC. The activities of Anti-B1 Antibody and rituximab were nearly identical in the ADCC assay. In addition, Anti-B1 Antibody showed direct induction of apoptosis in all B-cell lines tested. In general, crosslinking Anti-B1 Antibody with a goat anti-mouse Ig did not further enhance the percentage of cells undergoing apoptosis. Importantly, a F(ab')(2) fragment of Anti-B1 Antibody induced apoptosis, while the Fab fragment did not, indicating that the Fc region was not required and dimerization of CD20 may be sufficient for induction of apoptosis. In contrast, rituximab, which binds to an overlapping epitope on CD20 with a three-fold lower affinity than Anti-B1 Antibody, did not efficiently induce apoptosis in the cell lines tested in the absence of crosslinking. In conclusion, these two anti-CD20 antibodies have overlapping, but distinct mechanisms of action on B-cell lines.  相似文献   

7.
Epitope specificity of the anti-(B cell lymphoma) monoclonal antibody,LL2   总被引:3,自引:0,他引:3  
LL2 is a murine monoclonal antibody IgG2a reactive with B cells and non-Hodgkin's B-cell lymphoma, which, in a radioiodinated form, induces responses in lymphoma patients [Goldenberg et al. (1991) J Clin Oncol 9:548–564]. In this report we identify LL2 as a member of the CD22 cluster. The molecular size of the antigen, its expression profile, and competitive blocking studies were used to establish this identification. By Western blot analysis and immunoprecipitation studies using the Raji Burkitt's lymphoma cell line metabolically labelled with [3H]leucine, the LL2 antigen was determined to correspond to a molecular mass of 140 kDa. The molecular mass of the LL2 antigen, and the B-cell-restricted reactivity of the LL2 antibody, were consistent with both the CD21 and CD22 clusters. To assess additional similarities and differences between LL2 and anti-CD22 and anti-CD21, the binding of these mAb to cultured cell lines. Nalm-6 and Molt-4, was compared by flow cytometry. The binding profile of LL2 on these cell lines was consistent with anti-CD22, but not anti-CD21. Sequential immunoprecipitation and cross-blocking studies with anti-CD22 monoclonal antibodies recognizing established CD22 epitopes were performed to confirm that LL2 reacts with CD22 and to determine which epitope LL2 recognizes. Binding of131I-LL2 to Raji cells is inhibited over 90% by prior incubation of the target cells with unlabelled RFB4, indicating that LL2 belongs to the same epitope group as RFB4, i.e., epitope B.This work was supported in part by USPHS grant CA39841 from the NIH  相似文献   

8.
Approval of an anti-CD20 chimeric monoclonal antibody, rituximab, has revolutionized cancer treatment and also validated CD20 targeting for providing benefit and improvement of overall response rate in B cell malignancies. Although many patients have benefited from the treatment of rituximab, there are still significant numbers of patients who are refractory or develop resistance to the treatment. Here we discuss pre-clinically well-defined potential mechanisms of action for rituximab and review the ways next generation anti-CD20 monoclonal antibodies can potentially exploit them to further enhance the treatment of B cell malignancies. Although the relative importance of each of these mechanism remains to be established in the clinic, well-designed clinical trials will help to define the efficacy and understanding of which effector activity of modified next generation anti-CD20 mAb will be important in the treatment of B-cell malignancies.Key words: CD20, NHL, CLL, monoclonal antibody, next generation anti-CD20 antibodies, ADCC, CDC, ADCP, PCD, rituximab  相似文献   

9.
Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application.  相似文献   

10.
Many biological and biomedical laboratory assays require the use of antibodies and antibody fragments that strongly bind to their cell surface targets. Conventional binding assays, such as the enzyme-linked immunosorbent assay (ELISA) and flow cytometry, have many challenges, including capital equipment requirements, labor intensiveness, and large reagent and sample consumption. Although these techniques are successful in mainstream biology, there is an unmet need for a tool to quickly ascertain the relative binding capabilities of antibodies/antibody fragments to cell surface targets on the benchtop at low cost. We describe a novel cell capture assay that enables several candidate antibodies to be evaluated quickly as to their relative binding efficacies to their cell surface targets. We used chimeric rituximab and murine anti-CD20 monoclonal antibodies as cell capture agents on a functionalized microscope slide surface to assess their relative binding affinities based on how well they capture CD20-expressing mammalian cells. We found that these antibodies’ concentration-dependent cell capture profiles correlate with their relative binding affinities. A key observation of this assay involved understanding how differences in capture surfaces affect the assay results. This approach can find utility when an antibody or antibody fragment against a known cell line needs to be selected for targeting studies.  相似文献   

11.
T lymphocyte activation with monoclonal antibodies directed against the CD2 (T,p50) sheep red blood cell receptor antigen and against CD3 (T,p19,29) has been investigated. Co-stimulation of purified T lymphocytes with anti-CD3 (SP34) and anti-CD2 (9-1), which detects a unique epitope on the CD2 molecule, results in T cell activation and cell proliferation. Each antibody alone is unable to mediate this effect. Co-stimulation of purified T cells with two different anti-CD2 antibodies, 9-1 and 9.6, which detect two different epitopes on the CD2 molecule, are also mitogenic. In contrast, the combination of anti-CD3 (SP34) and anti-CD2 (9.6) cannot induce T cell activation. These data suggest that the CD2 epitope defined by the 9-1 antibody is functionally important for T cell activation via the CD3/Ti complex. Furthermore, it is demonstrated that anti-CD3 (SP34) induces epitopic modulation of the CD2 molecule, resulting in enhanced expression of the CD2, 9-1 epitope. This epitope modulation of the CD2 (9-1) epitope by anti-CD3 (SP34) occurs instantaneously at 4 degrees C and in the presence of NaN3. The functional interaction between CD3 and CD2 occurs in spite of any evidence of complex formation between these two molecules. These data suggest that the T cell differentiation antigens CD3 and CD2 are jointly involved in antigen-specific T cell activation. The data are consistent with a model for antigen-specific T cell activation involving both the CD3/Ti complex and subsequent activation of the CD2 complex T cell activation by co-stimulation with anti-CD3 (SP34) and anti-CD2 (9-1) is substantially enhanced by the addition of exogenous, purified interleukin 1 (IL 1). These data would suggest that the CD2 complex, as well as the putative IL 1 receptor, are involved in separate and complementary receptor-ligand interactions, resulting in the amplification of antigen-specific T cell responses.  相似文献   

12.
The repertoire of antigenic sites on two major dust mite allergens, Der p I of Dermatophagoides pteronyssinus and Der f I of D. farinae, was studied using murine (BALB/c) monoclonal antibodies (Mab), polyclonal rabbit IgG antibodies, and human IgE antibodies. Fifty-three IgG Mab were analyzed from six different fusions (five vs Der p I, one vs Der f I). By antigen binding radioimmunoassay (RIA), most Mab were either Der p I or Der f I specific, and only 2/53 bound to both allergens. Epitope mapping studies using cold Mab to inhibit the binding of six 125I labeled Mab to solid phase allergen defined four nonrepeated, nonoverlapping epitopes on Der p I, a single species-specific epitope on Der f I and a cross-reacting epitope present on each allergen. All but one of the 53 Mab bound to one of these six epitopes. Seventy percent (25/35) of anti-Der p I Mab were directed to the same epitope, suggesting that this epitope is immunodominant for BALB/c mice. Similarly, 88% (16/18) of anti-Der f I Mab bound to the same epitope on Der f I. Parallel cross-inhibition curves were obtained using the species-specific Mab, 10B9, and the cross-reacting Mab, 4C1, to compete for binding to Der p I, suggesting that the epitopes defined by these two Mab on Der p I are adjacent to one another. Both murine Mab and polyclonal rabbit IgG antibodies to cross-reacting sites on both allergens were used to inhibit binding of human IgE antibodies to Der p I by using 19 sera from mite allergic patients. Cross-reacting rabbit IgG antibodies strongly inhibited all sera tested (mean 79.5% +/- 7.7) and two Mab, 10B9 and 4C1, partially inhibited (38% +/- 12). However, the four Mab directed against separate species-specific epitopes (including murine immunodominant sites) showed little or no inhibition (less than or equal to 20%). Our results suggest that most of the epitopes defined by Mab are not the same as, or close to, those defined by human IgE antibody. The striking differences in the repertoires of murine IgG and human IgE antibody responses to Der p I and Der f I could be explained by genetic differences or by altered antigen processing and presentation occurring as a result of different modes of immunization in mice and in mite allergic humans.  相似文献   

13.
Previous studies have shown that bispecific antibodies that target both CD20 and CD22 have in vivo lymphomacidal properties. We developed a CD20-CD22 bispecific antibody (Bs20x22) from anti-CD20 and the anti-CD22 monoclonal antibodies (mAb), rituximab and HB22.7, respectively. Bs20x22 was constructed using standard methods and was shown to specifically bind CD20 and CD22. In vitro cytotoxicity assays showed that Bs20x22 was three times more effective than either parent mAb alone and twice as effective as a combination of both parent mAb used at equimolar concentrations. Bs20x22 was also nearly four times more effective at inducing apoptosis than either mAb alone. Examination of the MAPK and SAPK signaling cascades revealed that Bs20x22 induced significantly more p38 phosphorylation than either mAb alone. In an in vivo human NHL xenograft model, treatment with Bs20x22 resulted in significantly greater tumor shrinkage and improved overall survival when compared to either mAb alone or treatment with a combination of HB22.7 and rituximab. The effect of the initial tumor volume was assessed by comparing the efficacy of Bs20x22 administered before xenografts grew versus treatment of established tumors; significantly, greater efficacy was found when treatment was initiated before tumors could become established.  相似文献   

14.
Poster Sessions     
《MABS-AUSTIN》2013,5(1):14-16
Approval of an anti-CD20 chimeric monoclonal antibody, rituximab, has revolutionized cancer treatment and also validated CD20 targeting for providing benefit and improvement of overall response rate in B cell malignancies. Although many patients have benefited from the treatment of rituximab, there are still significant numbers of patients who are refractory or develop resistance to the treatment. Here we discuss pre-clinically well-defined potential mechanisms of action for rituximab and review the ways next generation anti-CD20 monoclonal antibodies can potentially exploit them to further enhance the treatment of B cell malignancies. Although the relative importance of each of these mechanism remains to be established in the clinic, well-designed clinical trials will help to define the efficacy and understanding of which effector activity of modified next generation anti-CD20 mAb will be important in the treatment of B-cell malignancies.  相似文献   

15.
Broadly neutralizing antibodies are considered an important part of a successful HIV vaccine. A better understanding of the factors underlying their development during infection and of the epitopes they target is needed to elicit similar antibody responses by vaccination. We and others reported that, on average, it takes 2 to 3 years for cross-reactive neutralizing antibodies to become detectable in the sera of HIV-1-infected subjects and that they target a limited number of epitopes on the HIV Envelope. Here we investigated the emergence and evolution of the earliest cross-reactive neutralizing antibody specificities in one HIV-1-infected individual, AC053. We defined two distinct epitopes on Env that are targeted by the broadly neutralizing antibody responses developed by AC053. The first specificity became evident at 3 years post infection and targeted the CD4-binding site of Env. Antibodies responsible for that specificity neutralized most, but not all, viruses susceptible to neutralization by the plasma antibodies of AC053. The second specificity became apparent approximately a year later. It was due to PG9-like antibodies, which were able to neutralize those viruses not susceptible to the anti-CD4-BS antibodies in AC053. These findings improve our understanding of the co-development of broadly neutralizing antibodies that target more than one epitope during natural HIV-1-infection in selected HIV+ subjects. They support the hypothesis that developing broadly neutralizing antibody responses targeting distinct epitopes by immunization could be feasible.  相似文献   

16.
The anti-CD20 antibody rituximab (RTX; Rituxan®, MabThera®) was the first anti-cancer antibody approved by the US Food and Drug Administration in 1997 and it is now the most-studied unconjugated therapeutic antibody. The knowledge gained over the past 15 y on the pharmacodynamics (PD) of this antibody has led to the development of a new generation of anti-CD20 antibodies with enhanced efficacy in vitro. Studies on the pharmacokinetics (PK) properties and the effect of factors such as tumor load and localization, antibody concentration in the circulation and gender on both PK and clinical response has allowed the design of optimized schedules and novel routes of RTX administration. Although clinical results using newer anti-CD20 antibodies, such as ofatumumab and obinutuzumab, and novel administration schedules for RTX are still being evaluated, the knowledge gained so far on RTX PK and PD should also be relevant for other unconjugated monoclonal antibody therapeutics, and will be critically reviewed here.  相似文献   

17.

Background

Rituximab is used in the treatment of CD20+ B cell lymphomas and other B cell lymphoproliferative disorders. Its clinical efficacy might be further improved by combinations with other drugs such as statins that inhibit cholesterol synthesis and show promising antilymphoma effects. The objective of this study was to evaluate the influence of statins on rituximab-induced killing of B cell lymphomas.

Methods and Findings

Complement-dependent cytotoxicity (CDC) was assessed by MTT and Alamar blue assays as well as trypan blue staining, and antibody-dependent cellular cytotoxicity (ADCC) was assessed by a 51Cr release assay. Statins were found to significantly decrease rituximab-mediated CDC and ADCC of B cell lymphoma cells. Incubation of B cell lymphoma cells with statins decreased CD20 immunostaining in flow cytometry studies but did not affect total cellular levels of CD20 as measured with RT-PCR and Western blotting. Similar effects are exerted by other cholesterol-depleting agents (methyl-β-cyclodextrin and berberine), but not filipin III, indicating that the presence of plasma membrane cholesterol and not lipid rafts is required for rituximab-mediated CDC. Immunofluorescence microscopy using double staining with monoclonal antibodies (mAbs) directed against a conformational epitope and a linear cytoplasmic epitope revealed that CD20 is present in the plasma membrane in comparable amounts in control and statin-treated cells. Atomic force microscopy and limited proteolysis indicated that statins, through cholesterol depletion, induce conformational changes in CD20 that result in impaired binding of anti-CD20 mAb. An in vivo reduction of cholesterol induced by short-term treatment of five patients with hypercholesterolemia with atorvastatin resulted in reduced anti-CD20 binding to freshly isolated B cells.

Conclusions

Statins were shown to interfere with both detection of CD20 and antilymphoma activity of rituximab. These studies have significant clinical implications, as impaired binding of mAbs to conformational epitopes of CD20 elicited by statins could delay diagnosis, postpone effective treatment, or impair anti-lymphoma activity of rituximab.  相似文献   

18.
Monoclonal antibodies against amylase-pullulanase enzyme from Bacillus circulans F-2 have been produced to locate and characterize the catalytic sites of the enzyme. The antibodies have been examined for inhibition of both enzyme activities of amylase and pullulanase and then classified into four types: Type I which inhibited amylase activity, Type II which inhibited pullulanase activity, Type III which inhibited both enzyme activities, and Type IV which had no effect on either enzyme activity. Only two monoclonal antibodies (MAP-12 and MAP-17) as Type I and two antibodies (MAP-3 and MAP-5) as Type II were isolated. The inhibitory activities of the antibodies were characterized and compared. In Type II antibodies, the maximal demonstrated inhibition on the pullulanase activity was 88% for MAP-3 with 1 microg of antibody and 90% for MAP-5 with 2 microg of antibody, but did not inhibit the amylase activity. In Type I antibodies, in contrast, the maximal demonstrated inhibition on the amylase activity was 94% for MAP-12 and 97% for MAP-17 with 1 microg of antibody, respectively, but no inhibition of the pullulanase was noted. MAP-12 recognized sequential epitope, while MAP-17 recognized conformation-dependent epitope of amylase activity-related regions. However, both MAP-3 and MAP-5 recognized the conformation-dependent epitope of the pullulanase activity-related region. Furthermore, the antibodies of MAP-3, MAP-5, MAP-12, and MAP-17 did not compete with one another for binding to the enzyme, indicating that they have different target epitopes on the enzyme. Antibody binding of MAP-12 and MAP-17 to the enzyme was not specifically affected by any of the antiamylase compounds tested: (a) nojirimycin; and (b) 1-deoxynojirimycin. Kinetic analysis of their effects provides evidence that both antibodies of MAP-12 and MAP-17 decrease the catalytic rate of enzyme activity and have little or no effect on substrate binding.  相似文献   

19.
The T cell antigen receptor is a approximately 90,000 dalton disulfide linked heterodimer that is non-covalently associated with the CD3 complex. Prior studies have demonstrated that anti-CD3 or -Ti antibodies can mimic antigen and induce cellular proliferation and the secretion of lymphokines. An early event in activation via CD3/Ti is a rapid increase in concentration of intracellular Ca2+ levels. In the present studies, we have produced a panel of monoclonal antibodies (MAb) against the Ti expressed on HPB-ALL tumor cells. All MAb immunoprecipitate a approximately 90,000 dalton disulfide linked heterodimer and induced co-modulation of Ti and CD3. On the basis of competitive binding studies, four distinct epitopes on the Ti of HPB-ALL were identified with MAb L38, L39, L41, and L42. These epitopes were additionally discriminated on the basis of reactivity with normal polyclonal T cell populations and functional effects on HPB-ALL. L39 reacted with a monomorphic epitope present on approximately 2 to 5% of peripheral blood T lymphocytes from all donors examined and was specifically mitogenic for peripheral blood T cells expressing this epitope. L39+ T cells in blood included both CD4+ and CD8+ lymphocytes. In contrast, L38, L41, and L42 failed to react with peripheral blood T cells and were not mitogenic for peripheral blood lymphocytes. Anti-Leu-4, L38, L39, and L41 MAb all induced a rapid increase in (Ca2+)i in HPB-ALL tumor cells, similar to previous findings with anti-CD3 and anti-Ti MAb against various tumor cells and peripheral blood T cells. In contrast, L42 MAb did not induce a substantial increase in (Ca2+)i. Failure of L42 to induce a substantial increased (Ca2+)i could not be attributed to the apparent titer, avidity, or isotype of the antibody. These findings suggest that induction of increased (Ca2+)i upon binding of Ti is epitope dependent. Furthermore, these data demonstrate that several distinct public and private epitopes can be identified on the T cell antigen receptor.  相似文献   

20.
In humans, the presence of two non-HLA class 1-like molecules, whose expression, similar to murine Tla, is restricted to cortical thymocytes, has been shown with monoclonal antibodies defining the first cluster of differentiation (CD1). We report here with the use of 12 anti-CD1 antibodies and a combination of technical approaches, the characterization of a third CD1 molecule. We show that we can presently define seven different epitopes on the three CD1 molecules: four epitopes are restricted to the 49,000 dalton molecule, two epitopes to the 45,000 dalton molecule, and one epitope to the 43,000 dalton molecule. We show that the association of the newly identified 45,000 dalton heavy chain with human beta2-microglobulin is weak. In addition we show the presence of a fourth non-HLA class I molecular species on the surface of normal human thymus cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号