首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

2.
Amyloid fibrils and peptide oligomers play central roles in the pathology of Alzheimer's disease, type 2 diabetes, Parkinson's disease, Huntington's disease, and prion-related disease. Here, we investigate the molecular interactions between preformed amyloid β (Aβ) molecular protofilaments and lipid bilayer membranes, in the presence of explicit water molecules, using computational models and all-atom molecular dynamics. These interactions play an important role in the stability and function of both Aβ fibrils and the adjacent cellular membrane. Taking advantage of the symmetry-related and directional properties of the protofilaments, we build models that cover several relative protofilament-membrane orientations. Our molecular dynamics simulations reveal the relative contributions of different structural elements to the dynamics and stability of Aβ protofilament segments near membranes, and the first steps in the mechanism of fibril-membrane interactions. During this process, we observe a significant alteration of the side-chain contact pattern in protofilaments, although a fraction of the characteristic β-sheet content is preserved. As a major driving force, we identify the electrostatic interactions between Aβ charged side chains, including E22, D23, and K28, and lipid headgroups. Together with hydrogen bonding with atoms from lipid headgroups, these interactions can facilitate the penetration of hydrophobic C-terminal amino acids through the lipid headgroup region, which can finally lead both to further loss of the initial fibril structure and to local membrane-thinning effects. Our results may guide new experiments that could test the extent to which the structural features of water-formed amyloid fibrils are preserved, lost, or reshaped by membrane-mediated interactions.  相似文献   

3.
The presence of amyloid plaques in the brain is a typical characteristic of Alzheimer's disease (AD). Amyloid plaques are formed from the deposits of aggregated amyloid β peptide (Aβ). The toxicity induced by Aβ aggregates is correlated with Aβ-membrane interactions. The mutual influences between aggregation and membranes are complicated and unclear. In recent years advanced experiments and findings are emerging to give us more detailed information on Aβ-membrane interactions. In this review, we mainly focus on the Aβ-membrane interactions and membrane-induced Aβ structures. The mechanism of Aβ-membrane interactions is also summarized, which provides insights into the prevention and treatment of AD.  相似文献   

4.
5.
Aβ peptide is the major component of senile plaques (SP) which accumulates in AD (Alzheimer's disease) brain. Reports from different laboratories indicate that anesthetics interact with Aβ peptide and induce Aβ oligomerization. The molecular mechanism of Aβ peptide interactions with these anesthetics was not determined. We report molecular details for the interactions of uniformly 15N labeled Aβ40 with different anesthetics using 2D nuclear magnetic resonance (NMR) experiments. At high concentrations both isoflurane and propofol perturb critical amino acid residues (G29, A30 and I31) of Aβ peptide located in the hinge region leading to Aβ oligomerization. In contrast, these three specific residues do not interact with thiopental and subsequently no Aβ oligomerization was observed. However, studies with combined anesthetics (thiopental and halothane), showed perturbation of these residues (G29, A30 and I31) and subsequently Aβ oligomerization was found. Perturbation of these specific Aβ residues (G29, A30 and I31) by different anesthetics could play an important role to induce Aβ oligomerization.  相似文献   

6.
Using isobaric–isothermal replica exchange molecular dynamics and all-atom explicit water model we study the impact of Aβ monomer binding on the equilibrium properties of DMPC bilayer. We found that partial insertion of Aβ peptide into the bilayer reduces the density of lipids in the binding “footprint” and indents the bilayer thus creating a lipid density depression. Our simulations also reveal thinning of the bilayer and a decrease in the area per lipid in the proximity of Aβ. Although structural analysis of lipid hydrophobic core detects disordering in the orientations of lipid tails, it also shows surprisingly minor structural perturbations in the tail conformations. Finally, partial insertion of Aβ monomer does not enhance water permeation through the DMPC bilayer and even causes considerable dehydration of the lipid–water interface. Therefore, we conclude that Aβ monomer bound to the DMPC bilayer fails to perturb the bilayer structure in both leaflets. Limited scope of structural perturbations in the DMPC bilayer caused by Aβ monomer may constitute the molecular basis of its low cytotoxicity.  相似文献   

7.
A promising strategy to control the aggregation of the Alzheimer's Aβ peptide in the brain is the clearance of Aβ from the central nervous system into the peripheral blood plasma. Among plasma proteins, human serum albumin plays a critical role in the Aβ clearance to the peripheral sink by binding to Aβ oligomers and preventing further growth into fibrils. However, the stoichiometry and the affinities of the albumin-Aβ oligomer interactions are still to be fully characterized. For this purpose, here we investigate the Aβ oligomer-albumin complexes through a novel and generally applicable experimental strategy combining saturation transfer and off-resonance relaxation NMR experiments with ultrafiltration, domain deletions, and dynamic light scattering. Our results show that the Aβ oligomers are recognized by albumin through sites that are evenly partitioned across the three albumin domains and that bind the Aβ oligomers with similar dissociation constants in the 1-100 nM range, as assessed based on a Scatchard-like model of the albumin inhibition isotherms. Our data not only explain why albumin is able to inhibit amyloid formation at physiological nM Aβ concentrations, but are also consistent with the presence of a single high affinity albumin-binding site per Aβ protofibril, which avoids the formation of extended insoluble aggregates.  相似文献   

8.
9.
Lensoside Aβ, representing the flavonol glycosides, is a compound isolated from the aerial parts of edible lentil (Lens culinaris) cultivar Tina. This substance arouses interest because so far there is very little data about secondary metabolites isolated from the leaves and stems of this plant. Additionally, bioactive potential of flavonoids is directly coupled with the membranes as a primary target of their physiological and pharmacological activity. The aim of this study was to investigate the effect of lensoside Aβ on lipid membranes. Interaction of examined compound with liposomes formed with dipalmitoylphosphatidylcholine (DPPC) was investigated with application of FTIR spectroscopy and 1H NMR technique. Molecular localization and orientation of lensoside Aβ in a single lipid bilayer system represented by giant unilamellar vesicles, was also investigated with application of confocal fluorescence lifetime imaging microscopy (FLIM).FTIR analysis revealed that the tested compound incorporates into DPPC membranes via hydrogen bonding to lipid polar head groups in the PO2 group region and the COPOC segment. Furthermore 1H NMR analysis showed ordering effect in both the hydrophobic alkyl chains region and the polar heads of phospholipids. FLIM investigation has revealed roughly parallel orientation of its molecules in the membranes. This suggests that one of the possible physiological functions of this flavonol could be screening a cell against short-wavelength radiation.  相似文献   

10.
Alzheimer's disease is one of the most common dementia among elderly worldwide. There is no therapeutic drugs until now to treat effectively this disease. One main reason is due to the poorly understood mechanism of Aβ peptide aggregation, which plays a crucial role in the development of Alzheimer's disease. It remains challenging to experimentally or theoretically characterize the secondary and tertiary structures of the Aβ monomer because of its high flexibility and aggregation propensity, and its conformations that lead to the aggregation are not fully identified. In this review, we highlight various structural ensembles of Aβ peptide revealed and characterized by computational approaches in order to find converging structures of Aβ monomer. Understanding how Aβ peptide forms transiently stable structures prior to aggregation will contribute to the design of new therapeutic molecules against the Alzheimer's disease.  相似文献   

11.
(?)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.  相似文献   

12.
The aggregation and deposition onto neuronal cells of amyloid β-peptide (Aβ) is central to the pathogenesis of Alzheimer's disease. Accumulating evidence suggests that membranes play a catalytic role in the aggregation of Aβ. This article summarizes the structures and properties of Aβ in solution and the physicochemical interaction of Aβ with lipid bilayers of various compositions. Reasons for discrepancies between results by different research groups are discussed. The importance of ganglioside clusters in the aggregation of Aβ is emphasized. Finally, a hypothetical physicochemical cascade in the pathogenesis of the disease is proposed.  相似文献   

13.
The activity of antimicrobial peptides has been shown to depend on the composition of the target cell membrane. The bacterial selectivity of most antimicrobial peptides has been attributed to the presence of abundant acidic phospholipids and the absence of cholesterol in bacterial membranes. The high amount of cholesterol present in eukaryotic cell membranes is thought to prevent peptide-induced membrane disruption by increasing the cohesion and stiffness of the lipid bilayer membrane. While the role of cholesterol on an antimicrobial peptide-induced membrane disrupting activity has been reported for simple, homogeneous lipid bilayer systems, it is not well understood for complex, heterogeneous lipid bilayers exhibiting phase separation (or "lipid rafts"). In this study, we show that cholesterol does not inhibit the disruption of raft-containing 1,2-dioleoyl-sn-glycero-3-phosphocholine:1,2-dipalmitoyol-sn-glycero-3-phosphocholine model membranes by four different cationic antimicrobial peptides, MSI-78, MSI-594, MSI-367 and MSI-843 which permeabilize membranes. Conversely, the presence of cholesterol effectively inhibits the disruption of non-raft containing 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyol-sn-glycero-3-phosphocholine lipid bilayers, even for antimicrobial peptides that do not show a clear preference between the ordered gel and disordered liquid-crystalline phases. Our results show that the peptide selectivity is not only dependent on the lipid phase but also on the presence of phase separation in heterogeneous lipid systems.  相似文献   

14.
15.
The anti-Alzheimer’s agent galantamine is known to possess anti-amyloid properties. However the exact mechanisms are not clear. We studied the binding interactions of galantamine with amyloid peptide dimer (Aβ1–40) through molecular docking and molecular dynamics simulations. Galantamine’s binding site within the amyloid peptide dimer was identified by docking experiments and the most stable complex was analyzed by molecular dynamics simulation. These studies show that galantamine was interacting with the central region of the amyloid dimer (Lys16–Ala21) and the C-terminal region (Ile31–Val36) with minimum structural drift of Cα atom in those regions. Strikingly, a significant drift was observed at the turn region from Asp23-Gly29 (Cα atom RMSD = 9.2 Å and 11.6 Å at 50 fs and 100 fs respectively). Furthermore, galantamine’s binding mode disrupts the key pi–pi stacking interaction between aromatic rings of Phe19 (chain A) and Phe19 (chain B) and intermolecular hydrogen bonds seen in unbound peptide dimer. Noticeably, the azepine tertiary nitrogen of galantamine was in close proximity to backbone CO of Leu34 (distance <3.5 Å) to stabilize the dimer conformation. In summary, the results indicate that galantamine binding to amyloid peptide dimer leads to a significant conformational change at the turn region (Asp23–Gly29) that disrupts interactions between individual β-strands and promotes a nontoxic conformation of Aβ1–40 to prevent the formation of neurotoxic oligomers.  相似文献   

16.
To understand the molecular mechanisms of amphiphilic membrane-active peptides, one needs to study their interactions with lipid bilayers under ambient conditions. However, it is difficult to control the pH of the sample in biophysical experiments that make use of mechanically aligned multilamellar membrane stacks on solid supports. HPLC-purified peptides tend to be acidic and can change the pH in the sample significantly. Here, we have systematically studied the influence of pH on the lipid interactions of the antimicrobial peptide PGLa embedded in oriented DMPC/DMPG bilayers. Using solid-state NMR (31P, 2H, 19F), both the lipid and peptide components were characterized independently, though in the same oriented samples under typical conditions of maximum hydration. The observed changes in lipid polymorphism were supported by DSC on multilamellar liposome suspensions. On this basis, we can present an optimized sample preparation protocol and discuss the challenges of performing solid-state NMR experiments under controlled pH. DMPC/DMPG bilayers show a significant up-field shift and broadening of the main lipid phase transition temperature when lowering the pH from 10.0 to 2.6. Both, strongly acidic and basic pH, cause a significant degree of lipid hydrolysis, which is exacerbated by the presence of PGLa. The characteristic re-alignment of PGLa from a surface-bound to a tilted state is not affected between pH of 7 to 4 in fluid bilayers. On the other hand, in gel-phase bilayers the peptide remains isotropically mobile under acidic conditions, displays various co-existing orientational states at pH 7, and adopts an unknown structural state at basic pH.  相似文献   

17.
18.
The nicotinic acetylcholine receptor (nAChR) has been reconstituted in POPC vesicles at high lipid–protein (L/P) ratios for the preparation of supported lipid bilayers with a low protein density for studies of protein–lipid interactions using atomic force microscopy (AFM). Initial reconstitutions using a standard dialysis method with bulk L/P ratios ranging from 20:1 to 100:1 (w/w) gave heterogeneous samples that contained both empty vesicles and proteoliposomes with a range of L/P ratios. This is problematic because empty vesicles adsorb and rupture to form bilayer patches more rapidly than do protein-rich vesicles, resulting in the loss of protein during sample washing. Although it was not possible to find reconstitution conditions that gave homogeneous populations of vesicles with high L/P ratios, an additional freeze–thaw cycle immediately after dialysis did reproducibly yield a fraction of proteoliposomes with L/P ratios above 100:1. These proteoliposomes were separated by sucrose gradient centrifugation and used to prepare supported bilayers with well-separated individual receptors and minimal adsorbed proteoliposomes. AFM images of such samples showed many small features protruding from the bilayer surface. These features range in height from 1 to 5 nm, consistent with the smaller intracellular domain of the protein exposed, and have lateral dimensions consistent with an individual receptor. Some bilayers with reconstituted protein also had a small fraction of higher features that are assigned to nAChR with the larger extracellular domain exposed and showed evidence for aggregation to give dimers or small oligomers. This work demonstrates the importance of using highly purified reconstituted membranes with uniform lipid–protein ratios for AFM studies of integral membrane protein–lipid interactions.  相似文献   

19.
beta-Amyloid (Aβ) is the primary protein component of senile plaques in Alzheimer's disease (AD) and is believed to play a role in its pathology. To date, the mechanism of action of Aβ in AD is unclear. We and others have observed that Aβ interacts either with or in the vicinity of the α6 sub-unit of integrin, and believe this may be important in its interaction with neuronal cells. In this study, we used confocal microscopy and flow cytometry to explore the residue specific interactions of Aβ40 with the cell surface and the α6 integrin receptor sub-unit. We probed the importance of the RHD sequence in Aβ40 and found that removal of the residues or their mutation using the Aβ8-40 or the D7N early onset AD sequence, respectively, led to a greater interaction between Aβ40 and an antibody bound to the α6-integrin sub-unit, as measured by fluorescence resonance energy transfer (FRET). These results suggest that the RHD sequence of Aβ40 does not mediate Aβ–α6 integrin interactions. However, the cyclic RGD mimicking peptide, Cilengitide, reduced the measured interaction between Aβ40 fibrils without the RHD sequence and an antibody bound to the α6-integrin sub-unit. We further probed the role of electrostatic forces on Aβ40–cell interactions and observed that the Aβ sequence that included the N-terminal segment of the peptide had reduced cellular binding at low salt concentrations, suggesting that its first 7 residues contribute to an electrostatic repulsion for the cell surface. These findings contribute to our understanding of Aβ–cell surface interactions and may provide insight into development of novel strategies to block Aβ–cell interactions that contribute to pathology in Alzheimer's disease.  相似文献   

20.
Pore formation in lipid bilayers by channel-forming peptides and toxins is thought to follow voltage-dependent insertion of amphipathic α-helices into lipid bilayers. We have developed an approximate potential for use within the CHARMm molecular mechanics program which enables one to simulate voltage-dependent interaction of such helices with a lipid bilayer. Two classes of helical peptides which interact with lipid bilayers have been studied: (a) δ-toxin, a 26 residue channel-forming peptide from Staphylococcus aureus; and (b) synthetic peptides corresponding to the α5 and α7 helices of the pore-forming domain of Bacillus thuringiensis CryIIIA δ-endotoxin. Analysis of δ-toxin molecular dynamics (MD) simulations suggested that the presence of a transbilayer voltage stabilized the inserted location of δ-toxin helices, but did not cause insertion per se. A series of simulations for the α5 and α7 peptides revealed dynamic switching of the α5 helix between a membrane-associated and a membrane-inserted state in response to a transbilayer voltage. In contrast the α7 helix did not exhibit such switching but instead retained a membrane associated state. These results are in agreement with recent experimental studies of the interactions of synthetic α5 and α7 peptides with lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号