首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concerns over the potential for infectious prion proteins to contaminate human biologics and biotherapeutics have been raised from time to time. Transmission of the pathogenic form of prion protein (PrPSc) through veterinary vaccines has been observed, yet no human case through the use of vaccine products has been reported. However, iatrogenic transmissions of PrPSc in humans through blood components, tissues and growth hormone have been reported. These findings underscore the importance of reliable detection or diagnostic methods to prevent the transmission of prion diseases, given that the number of asymptomatic infected individuals remains unknown, the perceived incubation time for human prion diseases could be decades, and no cure of the diseases has been found yet. A variety of biochemical and molecular methods can selectively concentrate PrPSc to facilitate its detection in tissues and cells. Furthermore, some methods routinely used in the manufacturing process of biological products have been found to be effective in reducing PrPSc from the products. Questions remain unanswered as to the validation criteria of these methods, the minimal infectious dose of the PrPSc required to cause infection and the susceptibility of cells used in gene therapy or the manufacturing process of biological products to PrPSc infections. Here, we discuss some of these challenging issues.Key words: prion, transmission, detection, tissue, blood transfusion, biologics, biotherapeutics, vaccine, cell substrates  相似文献   

2.
朊蛋白的细胞生物学研究   总被引:1,自引:0,他引:1  
朊蛋白病是人和牛羊等哺乳动物所患的致命性的神经系统变性疾病,它是由机体内正常的朊蛋白改变构象后所引起的疾病。本综述对朊蛋白在细胞生物学领域的认知和理解进行了归纳总结,阐述了正常和异常朊蛋白的翻译、表达、定位、裂解、转化等一系列过程,是对疾病本质的有益探索。  相似文献   

3.
朊病毒病,即传染性海绵状脑病(transmissible spongiform encephalopathies,TSEs),是一类致死性的神经退行性疾病,存在散发性、感染性和遗传性3种形式。在朊病毒病的病理过程中,细胞正常朊蛋白PrPc(cellular PrP)转化为异常构象的PrP^Sc(scrapie PrP)是至关重要的,但是朊病毒的增殖如何导致神经元凋亡仍不清楚。PrPc的胞内运输在朊病毒病中发挥重要作用,朊病毒感染后PrP^C转化为PrP^Sc,及遗传性朊病毒病中PrP突变可能影响PrP的生物合成、亚细胞定位及转运过程,通过干扰PrP^C的正常功能或产生毒性中间体而导致神经系统病变。现对近年来关于PrP胞内运输在朊病毒病中的作用进行综述。  相似文献   

4.
Transmissible spongiform encephalopathies (TSEs) are believed to be caused by an unconventional infectious agent, the prion protein. The pathogenic and infectious form of prion protein, PrPSc, is able to aggregate and form amyloid fibrils, very stable and resistant to most disinfecting processes and common proteases. Under specific conditions, PrPSc in bovine spongiform encephalopathy (BSE) brain tissue was found degradable by a bacterial keratinase and some other proteases. Since this disease-causing prion is infectious and dangerous to work with, a model or surrogate protein that is safe is needed for the in vitro degradation study. Here a nonpathogenic yeast prion-like protein, Sup35NM, cloned and overexpressed in E. coli, was purified and characterized for this purpose. Aggregation and deaggregation of Sup35NM were examined by electron microscopy, gel electrophoresis, Congo red binding, fluorescence, and Western blotting. The degradation of Sup35NM aggregates by keratinase and proteinase K under various conditions was studied and compared. These results will be of value in understanding the mechanism and optimization of the degradation process.  相似文献   

5.
A wealth of evidence supports the view that conformational change of the prion protein, PrPC, into a pathogenic isoform, PrPSc, is the hallmark of sporadic, infectious, and inherited forms of prion disease. Although the central role played by PrPSc in the pathogenesis of prion disease is appreciated, the cellular mechanisms that recognize PrPSc and modulate its production, clearance, and neural toxicity have not been elucidated. To address these questions, we used a tissue-specific expression system to express wild-type and disease-associated PrP molecules heterologously in Drosophila melanogaster. Our results indicate that Drosophila brain possesses a specific and saturable mechanism that suppresses the accumulation of PG14, a disease-associated insertional PrP mutant. We also found that wild-type PrP molecules are maintained in a detergent-soluble conformation throughout life in Drosophila brain neurons, whereas they become detergent-insoluble in retinal cells as flies age. PG14 protein expression in Drosophila eye did not cause retinal pathology. Our work reveals the presence of mechanisms in neurons that specifically counterbalance the production of misfolded PrP conformations, and provides an opportunity to study these processes in a model organism amenable to genetic analysis.  相似文献   

6.
Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.  相似文献   

7.
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease(AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein(PrP~C ) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrP~C contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrP~C , which lead to high affinity binding between Aβ oligomers and PrP~C . The interaction between PrP~C and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system(CNS). Thus, silencing PrP~C expression may turn out be an effective treatment for PrP~C dependent AD.  相似文献   

8.
《朊病毒》2013,7(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.  相似文献   

9.
In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob in human, bovine spongiform encephalopathy in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 β-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the β-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.  相似文献   

10.
An important component of the latency period of the transmissible spongiform encephalopathies (prion diseases) can be attributed to delays during the propagation of the infectious prion isoform, PrPSc, through peripheral nervous tissues. A growing body of data report that the host prion protein, PrPC, is required in both peripheral and central nervous tissues for susceptibility to infection. We introduce a mathematical model, which treats the PrPSc as a mobile infectious pathogen, and show how peripheral delays can be understood in terms of the intercellular dispersal properties of the PrPSc strain, its decay rate, and its efficiency at transforming the PrPC. It has been observed that when two pathogenic strains co-infect a host, the presence of the first inoculated strain can slow down, or stop completely, the spread of the second strain. This is thought to result from a reduced concentration of host protein available for conversion by the second strain. Our model can explain the mechanisms of such interstrain competition and the time-course of the increased delay. The model provides a link between those data suggesting a role for a continuous chain of PrP-expressing tissue linking peripheral sites to the brain, and data on prion strain competition.  相似文献   

11.
Jiri G. Safar 《朊病毒》2012,6(2):108-115
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.  相似文献   

12.
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic'' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.  相似文献   

13.
The key event in the pathogenesis of prion diseases is the conformational conversion of the normal prion protein (PrP) (PrPC) into an infectious, aggregated isoform (PrPSc) that has a high content of β-sheet. Historically, a great deal of effort has been devoted to developing antibodies that specifically recognize PrPSc but not PrPC, as such antibodies would have enormous diagnostic and experimental value. A mouse monoclonal IgM antibody (designated 15B3) and three PrP motif-grafted monoclonal antibodies (referred to as IgG 19–33, 89–112, and 136–158) have been previously reported to react specifically with infectious PrPSc but not PrPC. In this study, we extend the characterization of these four antibodies by testing their ability to immunoprecipitate and immunostain infectious and non-infectious aggregates of wild-type, mutant, and recombinant PrP. We find that 15B3 as well as the motif-grafted antibodies recognize multiple types of aggregated PrP, both infectious and non-infectious, including forms found in brain, in transfected cells, and induced in vitro from purified recombinant protein. These antibodies are exquisitely selective for aggregated PrP, and do not react with soluble PrP even when present in vast excess. Our results suggest that 15B3 and the motif-grafted antibodies recognize structural features common to both infectious and non-infectious aggregates of PrP. Our study extends the utility of these antibodies for diagnostic and experimental purposes, and it provides new insight into the structural changes that accompany PrP oligomerization and prion propagation.  相似文献   

14.
In most human and animal prion diseases the abnormal disease-associated prion protein (PrPSc) is deposited as non-amyloid aggregates in CNS, spleen and lymphoid organs. In contrast, in humans and transgenic mice with PrP mutations which cause expression of PrP lacking a glycosylphosphatidylinositol (GPI)-anchor, most PrPSc is in the amyloid form. In transgenic mice expressing only anchorless PrP (tg anchorless), PrPSc is deposited not only in CNS and lymphoid tissues, but also in extraneural tissues including heart, brown fat, white fat, and colon. In the present paper, we report ultrastructural studies of amyloid PrPSc deposition in extraneural tissues of scrapie-infected tg anchorless mice. Amyloid PrPSc fibrils identified by immunogold-labeling were visible at high magnification in interstitial regions and around blood vessels of heart, brown fat, white fat, colon, and lymphoid tissues. PrPSc amyloid was located on and outside the plasma membranes of adipocytes in brown fat and cardiomyocytes, and appeared to invaginate and disrupt the plasma membranes of these cell types, suggesting cellular damage. In contrast, no cellular damage was apparent near PrPSc associated with macrophages in lymphoid tissues and colon, with enteric neuronal ganglion cells in colon or with adipocytes in white fat. PrPSc localized in macrophage phagolysosomes lacked discernable fibrils and might be undergoing degradation. Furthermore, in contrast to wild-type mice expressing GPI-anchored PrP, in lymphoid tissues of tg anchorless mice, PrPSc was not associated with follicular dendritic cells (FDC), and FDC did not display typical prion-associated pathogenic changes.  相似文献   

15.
Prions and prion proteins   总被引:7,自引:0,他引:7  
N Stahl  S B Prusiner 《FASEB journal》1991,5(13):2799-2807
Neurodegenerative diseases of animals and humans including scrapie, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease are caused by unusual infectious pathogens called prions. There is no evidence for a nucleic acid in the prion, but diverse experimental results indicate that a host-derived protein called PrPSc is a component of the infectious particle. Experiments with scrapie-infected cultured cells show that PrPSc is derived from a normal cellular protein called PrPC through an unknown posttranslational process. We have analyzed the amino acid sequence and posttranslational modifications of PrPSc and its proteolytically truncated core PrP 27-30 to identify potential candidate modifications that could distinguish PrPSc from PrPC. The amino acid sequence of PrP 27-30 corresponds to that predicted from the gene and cDNA. Mass spectrometry of peptides derived from PrPSc has revealed numerous modifications including two N-linked carbohydrate moieties, removal of an amino-terminal signal sequence, and alternative COOH termini. Most molecules contain a glycosylinositol phospholipid (GPI) attached at Ser-231 that results in removal of 23 amino acids from the COOH terminus, whereas 15% of the protein molecules are truncated to end at Gly-228. The structure of the GPI from PrPSc has been analyzed and found to be novel, including the presence of sialic acid. Other experiments suggest that the N-linked oligosaccharides are not necessary for PrPSc formation. Although detailed comparison of PrPSc with PrPC is required, there is no obvious way in which any of the modifications might confer upon PrPSc its unusual physical properties and allow it to act as a component of the prion. If no chemical difference is found between PrPC and PrPSc, then the two isoforms of the prion protein may differ only in their conformations or by the presence of bound cellular components.  相似文献   

16.
Prions cause transmissible and genetic neurodegenerative diseases. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrPSc), which is encoded by a chromosomal gene. Although the PrP gene is single copy, transgenic mice with both alleles of the PrP gene ablated develop normally. A post-translational process, as yet unidentified, converts the cellular prion protein (PrPC) into PrPSc. Scrapie incubation times, neuropathology and prion synthesis in transgenic mice are controlled by the PrP gene. Mutations in this gene are genetically linked to the development of neurodegeneration. Transgenic mice expressing mutant PrP spontaneously develop neurological dysfunction and spongiform neuropathology. Future investigations of prion diseases using molecular biological and genetic approaches promise to yield much new information about these once enigmatic disorders.  相似文献   

17.
Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states.

Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages.

This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.  相似文献   

18.
A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels.  相似文献   

19.
Background: Prion diseases are fatal and infectious neurodegenerative diseases affecting humans and animals. Rabbits are one of the few mammalian species reported to be resistant to infection from prion diseases isolated from other species (I. Vorberg et al., Journal of Virology 77 (3) (2003) 2003-2009). Thus the study of rabbit prion protein structure to obtain insight into the immunity of rabbits to prion diseases is very important.Findings: The paper is a straight forward molecular dynamics simulation study of wild-type rabbit prion protein (monomer cellular form) which apparently resists the formation of the scrapie form. The comparison analyses with human and mouse prion proteins done so far show that the rabbit prion protein has a stable structure. The main point is that the enhanced stability of the C-terminal ordered region especially helix 2 through the D177-R163 salt-bridge formation renders the rabbit prion protein stable. The salt bridge D201-R155 linking helixes 3 and 1 also contributes to the structural stability of rabbit prion protein. The hydrogen bond H186-R155 partially contributes to the structural stability of rabbit prion protein.Conclusions: Rabbit prion protein was found to own the structural stability, the salt bridges D177-R163, D201-R155 greatly contribute and the hydrogen bond H186-R155 partially contributes to this structural stability. The comparison of the structural stability of prion proteins from the three species rabbit, human and mouse showed that the human and mouse prion protein structures were not affected by the removing these two salt bridges. Dima et al. (Biophysical Journal 83 (2002) 1268-1280 and Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15335-15340) also confirmed this point and pointed out that “correlated mutations that reduce the frustration in the second half of helix 2 in mammalian prion proteins could inhibit the formation of PrPSc”.  相似文献   

20.
Prion diseases appear to be caused by the aggregation of the cellular prion protein (PrP(C)) into an infectious form denoted PrP(Sc). The in vitro aggregation of the prion protein has been extensively investigated, yet many of these studies utilize truncated polypeptides. Because the C-terminal portion of PrP(Sc) is protease-resistant and retains infectivity, it is assumed that studies on this fragment are most relevant. The full-length protein can be distinguished from the truncated protein because it contains a largely structured, alpha-helical, C-terminal region in addition to an N terminus that is unstructured in the absence of metal ion binding. Herein, the in vitro aggregation of a truncated portion of the prion protein (PrP 90-231) and a full-length version (PrP 23-231) were compared. In each case, concentration-dependent aggregation was analyzed to discern whether it proceeds by a nucleation-dependent pathway. Both protein constructs appear to aggregate via a nucleated polymerization with a small nucleus size, yet the later steps differ. The full-length protein forms larger aggregates than the truncated protein, indicating that the N terminus may mediate higher-order aggregation processes. In addition, the N terminus has an influence on the assembly state of PrP before aggregation begins, causing the full-length protein to adopt several oligomeric forms in a neutral pH buffer. Our results emphasize the importance of studying the full-length protein in addition to the truncated forms for in vitro aggregation studies in order to make valid hypotheses about the mechanisms of prion aggregation and the distribution of aggregates in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号