共查询到20条相似文献,搜索用时 15 毫秒
1.
Sol Moe Lee Young Ran Ju Bo-Yeong Choi Jae Wook Hyeon Jun Sun Park Chi Kyeong Kim Su Yeon Kim 《朊病毒》2012,6(4):375-382
Creutzfeldt-Jakob disease (CJD), included in the human transmissible spongiform encephalopathies (TSE), is widely known to be caused by an abnormal accumulation of misfolding prion protein in the brain. Human prion protein gene (PRNP) is mapped in chromosome 20p13 and many single nucleotide polymorphisms (SNPs) in PRNP have been discovered. However, the functionality of SNPs in PRNP is yet unclear, though several SNPs have been known as important mutation related with susceptibility human prion diseases. Our aim is to identify specific genotype patterns and characteristics in the PRNP genomic region and to understand susceptibility among Korean discriminated prion disease patients, suspected CJD patients and the KARE data group. Here, we have researched genotypes and SNPs allele frequencies in PRNP in discriminated prion disease patients group (n = 22), suspected prion diseases patients group (n = 163) and the Korea Association REsource (KARE) data group (n = 296) in Korea. The sequencing regions were promoter region, exon1 and exon2 with their junction parts among 481 samples. A total of 25 SNPs were shown in this study. Nucleotide frequencies of all SNPs are exceedingly tended to bias toward dominant homozygote types except in rs2756271. Genotype frequencies at codon 129 and 219 coding region were similar with previous studies in Korea and Japan. Pathogenic mutations such as 102P/L, 200E/K and 203V/I were observed in discriminated CJD patients group, and 180V/I and 232M/R were shown in suspected prion disease patients group and the KARE data group. A total of 10 SNPs were newly identified, six in the promoter region, one in exon 2 and three in the 3′ UTR. The strong and unique linkage disequilibrium (D' = 0.94, r2 = 0.89) was observed between rs57633656 and rs1800014 which is located in codon 219 coding region. We expect that these data can be provided to determine specific susceptibility and a protective factor of prion diseases not only in Koreans but also in East Asians. 相似文献
2.
Lev G. Goldfarb Paul Brown Larisa Cervenakova D. Carleton Gajdusek 《Molecular neurobiology》1994,8(2-3):89-97
Genetic study of over 200 cases of Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), fatal familial insomnia (FFI), and kuru have brought a reliable body of evidence that the familial forms of CJD and all known cases of GSS and FFI are linked to germline mutations in the coding region of the PRNP gene on chromosome 20, either point substitutions or expansion of the number of repeat units. No pathogenic mutations have so far been found in sporadic or infectious forms of CJD, although there are features of genetic predisposition in iatrogenic CJD and kuru. In FFI and familial CJD, clinically and pathologically distinct syndromes that are both linked to the 178Asp→Asn substitution, phenotypic expression is dependent on a polymorphism at codon 129. Synthetic peptides homologous to several regions of PrP spontaneously form insoluble amyloid fibrils with unique morphological characteristics and polymerization tendencies. Peptides homologous to mutated regions of PrP exhibit enhanced fibrilogenic properties and, if mixed with the wild-type peptide, produce even more abundant and larger fibrous aggregates. A similar process in vivo may lead to amyloid accumulation and disease, and transmission of “baby fibrils” may induce disease in other hosts. 相似文献
3.
Biljan I Ilc G Giachin G Raspadori A Zhukov I Plavec J Legname G 《Journal of molecular biology》2011,412(4):660-673
The development of transmissible spongiform encephalopathies (TSEs) is associated with the conversion of the cellular prion protein (PrPC) into a misfolded, pathogenic isoform (PrPSc). Spontaneous generation of PrPSc in inherited forms of disease is caused by mutations in gene coding for PrP (PRNP). In this work, we describe the NMR solution-state structure of the truncated recombinant human PrP (HuPrP) carrying the pathological V210I mutation linked to genetic Creutzfeldt-Jakob disease. The three-dimensional structure of V210I mutant consists of an unstructured N-terminal part (residues 90-124) and a well-defined C-terminal domain (residues 125-228). The C-terminal domain contains three α-helices (residues 144-156, 170-194 and 200-228) and a short antiparallel β-sheet (residues 129-130 and 162-163). Comparison with the structure of the wild-type HuPrP revealed that although two structures share similar global architecture, mutation introduces some local structural differences. The observed variations are mostly clustered in the α2-α3 inter-helical interface and in the β2-α2 loop region. Introduction of bulkier Ile at position 210 induces reorientations of several residues that are part of hydrophobic core, thus influencing α2-α3 inter-helical interactions. Another important structural feature involves the alteration of conformation of the β2-α2 loop region and the subsequent exposure of hydrophobic cluster to solvent, which facilitates intermolecular interactions involved in spontaneous generation of PrPSc. The NMR structure of V210I mutant offers new clues about the earliest events of the pathogenic conversion process that could be used for the development of antiprion drugs. 相似文献
4.
We have modeled ovine prion protein (residues 119-233) based on NMR structures of PrP from other mammalian species. Modeling of the C-terminal domain of ovine PrP predicts three helices: helix-1 (residues 147-155), flanked by two short beta-strands; helix-2 (residues 176-197), and helix-3 (residues 203-229). Molecular dynamics simulations on this model of ovine PrP have determined structural differences between allelic variants. At neutral pH, limited root mean-squared (RMS) fluctuations were seen in the region of helix-1; between beta-strand-2 and residue 171, and the loop connecting helix-2 and helix-3. At low pH, these RMS fluctuations increased and showed allelic variation. The extent of RMS fluctuation between beta-strand 2 and residue 171 was ARR > ARQ > VRQ. This order was reversed for the loop region connecting helix-2 and helix-3. Although all three variants have the potential to display an extended helix at the C-terminal region of helix-1, the major influence of the VRQ allele was to restrict the conformations of the Asn162 and Arg139 side-chains. Variations observed in the simulations in the vicinity of helix-1 correlated with reactivity of C-terminal specific anti-PrP monoclonal antibodies with peripheral blood cells from scrapie-susceptible and -resistant genotypes of sheep: cells from VRQ homozygous sheep showed uniform reactivity, while cells from ARQ and ARR homozygous sheep showed variable binding. Our data show that molecular dynamics simulations can be used to determine structural differences between allelic variants of ovine PrP. The binding of anti-PrP monoclonal antibodies to ovine blood cells may validate these structural predictions. 相似文献
5.
Prion protein glycosylation 总被引:3,自引:1,他引:3
The transmissible spongiform encephalopathies (TSE), or prion diseases are a group of transmissible neurodegenerative disorders of humans and animals. Although the infectious agent (the 'prion') has not yet been formally defined at the molecular level, much evidence exists to suggest that the major or sole component is an abnormal isoform of the host encoded prion protein (PrP). Different strains or isolates of the infectious agent exist, which exhibit characteristic disease phenotypes when transmitted to susceptible animals. In the absence of a nucleic acid genome it has been hard to accommodate the existence of TSE strains within the protein-only model of prion replication. Recent work examining the conformation and glycosylation patterns of disease-associated PrP has shown that these post-translational modifications show strain-specific properties and contribute to the molecular basis of TSE strain variation. This article will review the role of glycosylation in the susceptibility of cellular PrP to conversion to the disease-associated conformation and the role of glycosylation as a marker of TSE strain type. 相似文献
6.
Yin Xu Chan Tian Shao-Bin Wang Wu-Ling Xie Yan Guo Jin Zhang Qi Shi Cao Chen Xiao-Ping Dong 《Autophagy》2012,8(11):1604-1620
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases. 相似文献
7.
《Autophagy》2013,9(11):1604-1620
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases. 相似文献
8.
9.
10.
Roy R Ordovas L Zaragoza P Romero A Moreno C Altarriba J Rodellar C 《Animal genetics》2006,37(3):215-218
11.
DNA from 252 bovine spongiform encephalopathy (BSE) cattle and 376 non-diseased control cattle were genotyped for nine loci in the prion protein (PRNP) gene region, three loci in the neurofibromin 1 (NF1) region and four control loci on different chromosomes. The allele and genotype frequencies of the control loci were similar in BSE and control cattle. In the analysed 7.4 Mb PRNP region, the largest differences between BSE and control cattle were found for the loci REG2, R16 and R18, which are located between +300 and +5600 bp, spanning PRNP introns 1 to 2. Carriers of the REG2 genotype 128/128 were younger at BSE diagnosis than those with the other genotypes (128/140 or 140/140). The predominant haplotype REG2 128 bp-R18 173 bp occurred more frequently (P < 0.001), and the second-most frequent haplotype (REG2 140 bp-R18 175 bp) occurred less frequently (P < 0.05) in BSE than in control cattle. The largest frequency differences between BSE and control groups were observed in the Brown Swiss breed. Across all breeds, most of the same alleles and haplotypes of the PRNP region were associated with BSE. In the 23-cM NF1 region, associations with BSE incidence were found for the RM222 allele and for the DIK4009 genotype frequencies. Cattle carrying RM222 genotypes with the 127- or 129-bp alleles were about half a year older at BSE incidence than those with other genotypes. Across the breeds, different alleles and genotypes of the NF1 region were associated with BSE. The informative DNA markers were used to localize the genetic disposition to BSE and may be useful for the identification of the causative DNA variants. 相似文献
12.
Jeffrey D. Wall 《Current opinion in genetics & development》2001,11(6):647-651
New methods for analyzing sequence polymorphism data have uncovered some striking patterns of linkage disequilibrium in both humans and fruitflies. These methods have revealed examples where the observed amount of linkage disequilibrium is either much more or much less than expected, and have led to advances in our understanding of the forces that affect naturally occurring genetic variation. With the recent explosion of sequence polymorphism data, the prospects for further progress from these methods are quite promising. 相似文献
13.
Tuzi NL Clarke AR Bradford B Aitchison L Thomson V Manson JC 《Genesis (New York, N.Y. : 2000)》2004,40(1):1-6
Expression of the PrP glycoprotein is essential for the development of the transmissible spongiform encephalopathy (TSE) or prion diseases. Although PrP is widely expressed in the mouse, the precise relevance of different PrP-expressing cell types to disease remains unclear. To address this, we generated two lines of floxed PrP gene-targeted transgenic mice using the Cre recombinase-loxP system. These floxed mice allow a functional PrP allele to be either switched \"on\" or \"off.\" We demonstrate control of PrP expression for both alleles following Cre-mediated recombination, as determined by PrP mRNA and protein expression in the brain. Moreover, we show that Cre-mediated alteration of PrP expression in these mice has a major influence on the development of TSE disease. These floxed PrP mice will allow the involvement of PrP expression in specific cell types following TSE infection to be defined, which may identify potential sites for therapeutic intervention. 相似文献
14.
传染性海绵样脑病因疯牛病的爆发和新型克雅氏病的出现而引起人们的关注。研究发现,疯牛病的流行可能是由羊痒病的病原引起的,这病原被Prusiner命名为“Prion”(1982)。从80年代开始研究以来,越来越多的关于Prion的特性被人们所了解,比如Prion蛋白和PrP基因。本文综述了近几年来研究者们用不同手段从各个角度对病原进行研究的新进展。 相似文献
15.
Following the discovery of a causal link between bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease (vCJD) in humans, several experimental approaches have been used to try to assess the potential risk of transmission of other animal transmissible spongiform encephalopathies (TSEs) to humans. Experimental challenge of non-human primates, humanised transgenic mice and cell-free conversion systems have all been used as models to explore the susceptibility of humans to animal TSEs. In this review we compare and contrast in vivo and in vitro evidence of the zoonotic risk to humans from sheep, cattle and deer prions, focusing primarily on chronic wasting disease and our own recent studies using protein misfolding cyclic amplification. 相似文献
16.
单核苷酸多态性基因分型技术原理与进展 总被引:5,自引:0,他引:5
在基因组规模了解遗传变异与生物功能之间的关系可望为生物学带来全新的深入认识。本从等位基因分型机理、反应形式和检测方法等三个方面讨论SNP分型方法的现状,并简要介绍了目前应用的一些分型方法。 相似文献
17.
Alpers MP 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1510):3707-3713
Kuru is a fatal transmissible spongiform encephalopathy restricted to the Fore people and their neighbours in a remote region of the Eastern Highlands of Papua New Guinea. When first investigated in 1957 it was found to be present in epidemic proportions, with approximately 1000 deaths in the first 5 years, 1957-1961. The changing epidemiological patterns and other significant findings such as the transmissibility of kuru are described in their historical progression. Monitoring the progress of the epidemic has been carried out by epidemiological surveillance in the field for 50 years. From its peak, the number of deaths from kuru declined to 2 in the last 5 years, indicating that the epidemic is approaching its end. The mode of transmission of the prion agent of kuru was the local mortuary practice of transumption. The prohibition of this practice in the 1950s led to the decline in the epidemic, which has been prolonged into the present century by incubation periods that may exceed 50 years. Currently, the epidemiological surveillance is being maintained and further studies on human genetics and the past mortuary practices are being conducted in the kuru-affected region and in communities beyond it. 相似文献
18.
羊瘙痒因子263K毒株感染金黄地鼠后鼠脑组织中检出PrP-res蛋白及其神经病理学研究 总被引:7,自引:2,他引:7
羊瘙痒病是累及山羊及绵羊的可传播海绵状脑病。为了观察羊瘙痒因子 (Scrapie)的病原特征及病理组织改变特点 ,将羊瘙痒因子 2 6 3K毒株颅内接种至金黄地鼠。经过 81~ 110天的潜伏期 ,89%的动物发病 (17/19只 )。对发病地鼠的神经病理学检测发现 ,海绵状空泡变性的检出率为 5 9% ,淀粉样斑的检出率为 17 6 %。利用免疫组化和蛋白酶消化后的Westernblotting检测证实 ,10 0 %的发病地鼠的脑组织中都出现蛋白酶抗性朊蛋白 (PrP res)。17只发病地鼠脑组织提取物中 ,PrP res的泳动位置和分子量大小完全一致 ,出现两条分子量在 2 5kD~ 31kD的反应带。尝试应用快速玻片印迹法检测病变组织中的PrP res,结果显示 ,与常规固定包埋切片的免疫组化检出效果相似。这提示脑组织印片法可成为临床检测克 雅氏病 (Creutzfeldt Jacobdisease ,CJD)患者脑组织活检标本中PrP res的快速、有效的方法。羊瘙痒因子 2 6 3K成功感染金黄地鼠再次证明 ,金黄地鼠是TSE感染因子良好的动物模型 ,发病率高 ,潜伏期短 ,发病动物PrP res的检出率明显高于典型病理改变的检出率。新生成的PrP res的电泳类型与接种的TSE因子有关 ,与宿主的个体差异无关 ,提示TSE感染因子的确存在“株”的现象。 相似文献
19.
Aude Rogivue Rimjhim R. Choudhury Stefan Zoller Stphane Joost Franois Felber Michel Kasser Christian Parisod Felix Gugerli 《Molecular ecology resources》2019,19(3):773-787
Advances in high‐throughput sequencing have promoted the collection of reference genomes and genome‐wide diversity. However, the assessment of genomic variation among populations has hitherto mainly been surveyed through single‐nucleotide polymorphisms (SNPs) and largely ignored the often major fraction of genomes represented by transposable elements (TEs). Despite accumulating evidence supporting the evolutionary significance of TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e., presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 polymorphic TEs, comparing their contributions to genomic diversity and divergence across populations. Few SNPs were shared among populations and overall showed high population‐specific variation, whereas most polymorphic TEs segregated among populations. The genomic context of these two classes of variants further highlighted candidate adaptive loci having a putative impact on functional genes. In particular, 4.96% of the SNPs were identified as nonsynonymous or affecting start/stop codons. In contrast, 43% of the polymorphic TEs were present next to Arabis genes enriched in functional categories related to the regulation of reproduction and responses to biotic as well as abiotic stresses. This unprecedented data set, mapping variation gained from SNPs and complementary polymorphic TEs within and among populations, will serve as a rich resource for addressing microevolutionary processes shaping genome variation. 相似文献
20.
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties. 相似文献