首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A majority of human therapeutic antibody candidates show pharmacokinetic properties suitable for clinical use, but an unexpectedly fast antibody clearance is sometimes observed that may limit the clinical utility. Pharmacokinetic data in cynomolgus monkeys collected for a panel of 52 antibodies showed broad distribution of target-independent clearance values (2.4–61.3 mL/day/kg), with 15 (29%) having clearance > 10 mL/day/kg. Alteration in the interaction with the recycling FcRn receptor did not account for the faster than expected clearance observed for the antibodies; off-target binding was presumed to account for the fast clearance. We developed an assay based on ELISA detection of non-specific binding to baculovirus particles that can identify antibodies having increased risk for fast clearance. This assay can be used during lead generation or optimization to identify antibodies with increased risk of having fast clearance in both humans and cynomolgus monkeys, and thus increase the likelihood of obtaining a suitable drug candidate.  相似文献   

2.
《MABS-AUSTIN》2013,5(5):1255-1264
Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development.  相似文献   

3.
Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development.  相似文献   

4.
MHAA4549A is a human immunoglobulin G1 (IgG1) monoclonal antibody that binds to a highly conserved epitope on the stalk of influenza A hemagglutinin and blocks the hemagglutinin-mediated membrane fusion in the endosome, neutralizing all known human influenza A strains. Pharmacokinetics (PK) of MHAA4549A and its related antibodies were determined in DBA/2J and Balb-c mice at 5 mg/kg and in cynomolgus monkeys at 5 and 100 mg/kg as a single intravenous dose. Serum samples were analyzed for antibody concentrations using an ELISA and the PK was evaluated using WinNonlin software. Human PK profiles were projected based on the PK in monkeys using species-invariant time method. The human efficacious dose projection was based on in vivo nonclinical pharmacological active doses, exposure in mouse infection models and expected human PK. The PK profiles of MHAA4549A and its related antibody showed a linear bi-exponential disposition in mice and cynomolgus monkeys. In mice, clearance and half-life ranged from 5.77 to 9.98 mL/day/kg and 10.2 to 5.76 days, respectively. In cynomolgus monkeys, clearance and half-life ranged from 4.33 to 4.34 mL/day/kg and 11.3 to 11.9 days, respectively. The predicted clearance in humans was ~2.60 mL/day/kg. A single intravenous dose ranging from 15 to 45 mg/kg was predicted to achieve efficacious exposure in humans. In conclusion, the PK of MHAA4549A was as expected for a human IgG1 monoclonal antibody that lacks known endogenous host targets. The predicted clearance and projected efficacious doses in humans for MHAA4549A have been verified in a Phase 1 study and Phase 2a study, respectively.  相似文献   

5.
Bispecific antibodies (BsAbs) can affect multiple disease pathways, thus these types of constructs potentially provide promising approaches to improve efficacy in complex disease indications. The specific and non-specific clearance mechanisms/biology that affect monoclonal antibody (mAb) pharmacokinetics are likely involved in the disposition of BsAbs. Despite these similarities, there are a paucity of studies on the in vivo biology that influences the biodistribution and pharmacokinetics of BsAbs. The present case study evaluated the in vivo disposition of 2 IgG-fusion BsAb formats deemed IgG-ECD (extracellular domain) and IgG-scFv (single-chain Fv) in cynomolgus monkeys. These BsAb molecules displayed inferior in vivo pharmacokinetic properties, including a rapid clearance (> 0.5 mL/hr/kg) and short half-life relative to their mAb counterparts. The current work evaluated factors in vivo that result in the aberrant clearance of these BsAb constructs. Results showed the rapid clearance of the BsAbs that was not attributable to target binding, reduced neonatal Fc receptor (FcRn) interactions or poor molecular/biochemical properties. Evaluation of the cellular distribution of the constructs suggested that the major clearance mechanism was linked to binding/association with liver sinusoidal endothelial cells (LSECs) versus liver macrophages. The role of LSECs in facilitating the clearance of the IgG-ECD and IgG-scFv BsAb constructs described in these studies was consistent with the minimal influence of clodronate-mediated macrophage depletion on the pharmacokinetics of the constructs in cynomolgus monkeys The findings in this report are an important demonstration that the elucidation of clearance mechanisms for some IgG-ECD and IgG-scFv BsAb molecules can be unique and complicated, and may require increased attention due to the proliferation of these more complex mAb-like structures.  相似文献   

6.

Purpose

Oxidized low-density lipoprotein (LDL) plays an essential role in the pathogenesis of atherosclerosis. The purpose of this study was to characterize the pharmacokinetics (PK) of a human recombinant IgG1 antibody to oxidized LDL (anti-oxLDL) in cynomolgus monkey. The tissue biodistribution of anti-oxLDL was also investigated using positron emission tomography (PET) imaging.

Methods

Anti-oxLDL was conjugated with the N-hydroxysuccinimide ester of DOTA (1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid) and radiolabeled by chelation of radioactive copper-64 (64Cu) for detection by PET. Anti-oxLDL was administered as a single intravenous (IV) dose of 10 mg/kg (as a mixture of radiolabeled and non-labeled material) to two male and two female cynomolgus monkeys. Serum samples were collected over 29 days. Two ELISA methods were used to measure serum concentrations of anti-oxLDL; Assay A was a ligand binding assay that measured free anti-oxLDL (unbound and partially bound forms) and Assay B measured total anti-oxLDL. The biodistribution was observed over a 48-hour period following dose administration using PET imaging.

Results

Anti-oxLDL serum concentration-time profiles showed a biphasic elimination pattern that could be best described by a two-compartment elimination model. The serum concentrations obtained using the two ELISA methods were comparable. Clearance values ranged from 8 to 17 ml/day/kg, while beta half-life ranged from 8 to12 days. The initial volume of distribution and volume of distribution at steady state were approximately 55 mL/kg and 150 mL/kg, respectively. PET imaging showed distribution predominantly to the blood pool, visible as the heart and great vessels in the trunk and limbs, plus diffuse signals in the liver, kidney, spleen, and bone marrow.

Conclusions

The clearance of anti-oxLDL is slightly higher than typical IgG1 antibodies in cynomolgus monkeys. The biodistribution pattern appears to be consistent with an antibody that has no large, rapid antigen sink outside the blood space.  相似文献   

7.
Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the “know-how” of therapeutic modality by design.  相似文献   

8.
Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5-6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.  相似文献   

9.
The pharmacokinetic (PK) behavior of monoclonal antibodies in cynomolgus monkeys (cynos) is generally translatable to that in humans. Unfortunately, about 39% of the antibodies evaluated for PKs in cynos have fast nonspecific (or non-target-mediated) clearance (in-house data). An empirical model relating variable region (Fv) charge and hydrophobicity to cyno nonspecific clearance was developed to gauge the risk an antibody would have for fast nonspecific clearance in the monkey. The purpose of this study was to evaluate the predictability of this empirical model on cyno nonspecific clearance with antibodies specifically engineered to have either high or low Fv charge. These amino acid changes were made in the Fv region of two test antibodies, humAb4D5-8 and anti-lymphotoxin α. The humAb4D5-8 has a typical nonspecific clearance in cynos, and by making it more positively charged, the antibody acquires fast nonspecific clearance, and making it less positively charged did not impact its clearance. Anti-lymphotoxin α has fast nonspecific clearance in cynos, and making it more positively charged caused it to clear even faster, whereas making it less positively charged caused it to clear slower and within the typical range. These trends in clearance were also observed in two other preclinical species, mice and rats. The effect of modifying Fv charge on subcutaneous bioavailability was also examined, and in general bioavailability was inversely related to the direction of the Fv charge change. Thus, modifying Fv charge appears to impact antibody PKs, and the changes tended to correlate with those predicted by the empirical model.  相似文献   

10.
《MABS-AUSTIN》2013,5(5):829-837
QBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single- and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359. We have shown by means of PK/PD modeling that clearance of mAb-ligand complex is the most likely explanation for the rapid clearance of QBP359 in cynomolgus monkey. IHC and liquid chromatography mass spectrometry data suggested a high turnover and synthesis rate of CCL21 in tissues. Although lymphoid tissue was expected to accumulate drug due to the high levels of CCL21 present, bioavailability following subcutaneous administration in monkeys was 52%. In human disease states, where CCL21 expression is believed to be expressed at 10-fold higher concentrations compared with cynomolgus monkeys, the PK/PD model of QBP359 and its binding to CCL21 suggested that very large doses requiring frequent administration of mAb would be required to maintain suppression of CCL21 in the clinical setting. This highlights the difficulty in targeting soluble proteins with high synthesis rates.  相似文献   

11.
The differentiation of therapeutic monoclonal antibodies in an increasingly competitive landscape requires optimization of clinical efficacy combined with increased patient convenience. We describe here the generation of MEDI5117, a human anti-interleukin (IL)-6 antibody generated by variable domain engineering, to achieve subpicomolar affinity for IL-6, combined with Fc (fragment crystallizable) engineering to enhance pharmacokinetic half-life. MEDI5117 was shown to be highly potent in disease-relevant cellular assays. The pharmacokinetics of MEDI5117 were evaluated and compared to those of its progenitor, CAT6001, in a single-dose study in cynomolgus monkeys. The antibodies were administered, either subcutaneously or intravenously, as a single dose of 5 mg/kg. The half-life of MEDI5117 was extended by approximately 3-fold, and clearance was reduced by approximately 4-fold when compared to CAT6001. MEDI5117 therefore represents a potential ‘next-generation’ antibody; future studies are planned to determine the potential for affinity-driven efficacy and/or less frequent administration.  相似文献   

12.
《MABS-AUSTIN》2013,5(8):1312-1321
ABSTRACT

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.  相似文献   

13.
《MABS-AUSTIN》2013,5(7):1331-1340
ABSTRACT

Single domain antibodies that combine antigen specificity with high tissue penetration are an attractive alternative to conventional antibodies. However, rapid clearance from the bloodstream owing to their small size can be a limitation of therapeutic single domain antibodies. Here, we describe and evaluate the conjugation of a single domain i-body, AD-114, which targets CXCR4, to a panel of half-life extension technologies including a human serum albumin-binding peptide, linear and branched PEG, and PASylation (PA600). The conjugates were assessed in murine, rat and cynomolgus monkey pharmacokinetic studies and showed that the branched PEG was most effective at extending circulating half-life in mice; however, manufacturing limitations of PEGylated test material precluded scale-up and assessment in larger animals. PA600, by comparison, was amenable to scale-up and afforded considerable half-life improvements in mice, rats and cynomolgus monkeys. In mice, the circulating half-life of AD-114 was extended from 0.18 h to 7.77 h following conjugation to PA600, and in cynomolgus monkeys, the circulating half-life of AD-114-PA600 was 24.27 h. AD-114-PA600 was well tolerated in cynomolgus monkeys at dose rates up to 100 mg/kg with no mortalities or drug-related clinical signs.  相似文献   

14.
Rozanolixizumab (UCB7665), a humanized high-affinity anti-human neonatal Fc receptor (FcRn) monoclonal antibody (IgG4P), has been developed to reduce pathogenic IgG in autoimmune and alloimmune diseases. We document the antibody isolation and compare rozanolixizumab with the same variable region expressed in various mono-, bi- and trivalent formats. We report activity data for rozanolixizumab and the different molecular formats in human cells, FcRn-transgenic mice, and cynomolgus monkeys. Rozanolixizumab, considered the most effective molecular format, dose-dependently and selectively reduced plasma IgG concentrations in an FcRn-transgenic mouse model (no effect on albumin). Intravenous (IV) rozanolixizumab dosing in cynomolgus monkeys demonstrated non-linear pharmacokinetics indicative of target-mediated drug disposition; single IV rozanolixizumab doses (30 mg/kg) in cynomolgus monkeys reduced plasma IgG concentration by 69% by Day 7 post-administration. Daily IV administration of rozanolixizumab (initial 30 mg/kg loading dose; 5 mg/kg daily thereafter) reduced plasma IgG concentrations in all cynomolgus monkeys, with low concentrations maintained throughout the treatment period (42 days). In a 13-week toxicology study in cynomolgus monkeys, supra-pharmacological subcutaneous and IV doses of rozanolixizumab (≤ 150 mg/kg every 3 days) were well tolerated, inducing sustained (but reversible) reductions in IgG concentrations by up to 85%, with no adverse events observed. We have demonstrated accelerated natural catabolism of IgG through inhibition of IgG:FcRn interactions in mice and cynomolgus monkeys. Inhibition of FcRn with rozanolixizumab may provide a novel therapeutic approach to reduce pathogenic IgG in human autoimmune disease. Rozanolixizumab is being investigated in patients with immune thrombocytopenia (NCT02718716) and myasthenia gravis (NCT03052751).  相似文献   

15.
Four cynomolgus monkeys (Macaca fascicularis) were inoculated in the lips and tongues with B virus. Virus shedding and antibody responses were monitored for up to 50 days postinfection. Virus was isolated from the oral cavities of all monkeys at 6 days postinfection despite the absence of observable lesions. Virus was not isolated from genital swabs or serum. Antibodies to both B virus and herpes simplex virus were detected by neutralization between days 8 and 12. Virus-specific IgM and IgG antibodies were measured by antibody capture radioimmunoassay. IgM was first detected on day 6; by contrast, IgG did not appear until day 12. Antibodies reactive in a competitive radioimmunoassay appeared by day 12 and peaked at 30 to 40 days postinfection. This study provides data on which to base the diagnosis of primary B virus infection in cynomolgus monkeys.  相似文献   

16.
We established the enzyme-linked immunosorbent assay (ELISA) for detecting antibodies to Campylobacter and applied it in defining the period of the primary infection of Campylobacter in infant cynomolgus monkeys (Macaca fascicularis). The antibody to Campylobacter spp. could be detected with only 0.25 mul of serum by using commercially available antigens and anti-cynomolgus monkey IgG antibody conjugated with alkaline phosphatase. The inhibition experiments using extracts of C. jejuni, C. fetus and Yersinia enterocolitica demonstrated that the established ELISA system could detect species-specific anti-C. jejuni and anti-C. fetus antibodies. The levels of antibodies to both C. jejuni and C. fetus were high in 2 weeks old infant cynomolgus monkeys, rapidly decreasing until 6 to 14 weeks of age. This result indicates that the antibodies detected in 2 week old infants were IgG antibodies of maternal origin transferred through placenta. The C. jejuni was isolated from infants when the level of maternal antibody became the lowest. Infant cynomolgus monkeys obviously developed IgG antibodies to C. jejuni within 4 weeks after infection. On the other hand, no antibody response to C. jejuni was found in two infants from which it could not be isolated throughout the observation period. As regards C. fetus infection, infants showed a poor antibody response although it was more frequently isolated than C. jejuni. In conclusion, the ELISA system established in the present study is useful for the serological diagnosis of C. jejuni infection during infancy in the cynomolgus monkey.  相似文献   

17.
Norfloxacin, a new orally active antibiotic, was investigated in cynomolgus monkeys for potential developmental toxicity. Fifty-seven monkeys were administered a control vehicle or norfloxacin by nasogastric gavage during the major period of organogenesis on gestational days (GD) 21 through 50 at doses of 0, 50, 100, 150, or 200/300 mg/kg/day. There was no evidence of teratogenicity at any dose level. Maternotoxicity and a significant increase in embryolethality occurred following doses of 200/300 mg/kg/day. The maternotoxicity was not expected based on range-finding studies in nonpregnant female monkeys, which showed no signs of toxicity in doses up to 500 mg/kg/day. Additional studies were conducted to determine if norfloxacin caused similar toxicity later in gestation. Forty-six pregnant monkeys were dosed with a control vehicle or 200 mg/kg/day norfloxacin for one of three 10-day periods on GD 36-45, 71-80, or 111-120. There were no maternotoxic, embryotoxic, or fetotoxic effects observed. Plasma concentrations of norfloxacin in five cynomolgus monkeys following 50 and 200 mg/kg oral doses were not dose-proportionate. However, at a given dose, administered in cross-over fashion, plasma concentrations of norfloxacin were higher in nonpregnant females (approximately 20-40%) than during pregnancy when the same subject was compared. At the no-observed-effect dose for maternal and embryotoxicity (50 mg/kg), peak plasma concentrations of norfloxacin in pregnant cynomolgus monkeys are approximately threefold higher than those observed in human volunteers receiving norfloxacin at the maximum recommended therapeutic dose of 400 mg (5.7 mg/kg based on 70 kg body weight) twice per day.  相似文献   

18.
The neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. There are mixed reports on whether modification of the interaction with FcRn can be used as an engineering strategy to improve the pharmacokinetic and pharmacodynamic properties of monoclonal antibodies. We tested whether the T250Q/M428L mutations, which improved the pharmacokinetics of humanized IgGs in the rhesus monkey, would translate to a pharmacokinetic benefit in both cynomolgus monkeys and mice when constructed on a different humanized IgG framework (anti-tumor necrosis factor-alpha (TNFalpha)). The T250Q/M428L anti-TNFalpha variant displayed an approximately 40-fold increase in binding affinity to cynomolgus monkey FcRn (C-FcRn) at pH 6.0, with maintenance of the pH binding dependence. We also constructed another anti-TNFalpha variant (P257I/Q311I) whose binding kinetics with the C-FcRn was similar to that of the T250Q/M428L variant. The binding affinity of the T250Q/M428L variant for murine FcRn was increased approximately 500-fold, with maintenance of pH dependence. In contrast to the interaction with C-FcRn, this interaction was driven mainly by a decrease in the rate of dissociation. Despite the improved in vitro binding properties of the anti-TNFalpha T250Q/M428L and P257I/Q311I variants to C-FcRn, the pharmacokinetic profiles of these molecules were not differentiated from the wild-type antibody in cynomolgus monkeys after intravenous administration. When administered intravenously to mice, the T250Q/M428L anti-TNFalpha variant displayed improved pharmacokinetics, characterized by an approximately 2-fold slower clearance than the wild-type antibody. The discrepancy between these data and previously reported benefits in rhesus monkeys and the inability of these mutations to translate to improved kinetics across species may be related to a number of factors. We propose extending consideration to differences in the absolute IgG-FcRn affinity, the kinetics of the IgG/FcRn interaction, and differences in the relative involvement of this pathway in the context of other factors influencing the disposition or elimination of monoclonal antibodies.  相似文献   

19.
BACKGROUND AND PURPOSE: Q fever is a disease of humans. Vaccines to prevent this disease have demonstrated efficacy in rodents and must also be evaluated for efficacy in a nonhuman primate model. Preliminary to vaccine efficacy experiments, cynomolgus and rhesus monkeys were evaluated as suitable experimental models of acute Q fever. METHODS: Both species of monkeys were challenged with aerosolized 10(5) virulent phase-I Coxiella burnetii Henzerling strain, and clinical and serologic responses were determined. RESULTS: Radiographic changes were observed in seven of eight monkeys of both species; however, changes in cynomolgus monkeys tended to be more significant. Between 7 and 10 days after challenge, all rhesus monkeys and 88% of cynomolgus monkeys were bacteremic. Sequential increases in antibody responses to C. burnetii phase-I and phase-II whole cells and phase-I lipopolysaccharide were observed in both species. Although the maximal rectal temperature increase was similar in both species, duration of fever was slightly longer in rhesus monkeys. Clinical features were similar to those described in human acute Q fever patients. CONCLUSIONS: On the basis of the more pronounced radiographic changes in cynomolgus monkeys, we favor use of this species for future studies of vaccine efficacy.  相似文献   

20.
Dimerization is essential for activity of human epidermal growth factor receptors (HER1/EGFR, HER2/ErbB2, HER3/ErbB3, and ErbB4) and mediates intracellular signaling events leading to cancer cell proliferation, survival, and resistance to therapy. HER2 is the preferred dimerization partner. Activation of HER signaling pathways may be blocked by inhibition of dimer formation using a monoclonal antibody (MAb) directed against the dimerization domain of HER2. The murine MAb 2C4 that specifically binds the HER2 dimerization domain was cloned as a chimeric antibody, humanized using a computer-generated model to guide framework substitutions, and variants were tested as Fabs. Pharmacokinetics and toxicology were evaluated in rodents and cynomolgus monkeys. Cloning the variable domains of MAb 2C4 into a vector containing human kappa and CH1 domains allowed construction of a mouse-human chimeric Fab. DNA sequencing of the chimeric clone permitted identification of CDR residues. The full-length IgG1 of variant F-10 was equivalent in binding to chimeric IgG1 and was designated pertuzumab (rhuMAb 2C4; Omnitarg). Pertuzumab pharmacokinetics was best described by a two-compartment model with a distribution phase of <1 day, terminal half-life of ~10 days, and volume of distribution of ~40 mL/kg that approximates serum volume. With the exception of diarrhea, pertuzumab was generally well tolerated in cynomolgus monkeys. Pertuzumab, a recombinant humanized IgG1 MAb, is the first of a new class of agents known as HER dimerization inhibitors. Inhibition of HER dimerization may be an effective anticancer strategy in tumors with either normal or elevated expression of HER2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号