首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic wasting disease (CWD) is the only known transmissible spongiform encephalopathy affecting free-ranging wildlife. Although the exact mode of natural transmission remains unknown, substantial evidence suggests that prions can persist in the environment, implicating components thereof as potential prion reservoirs and transmission vehicles.14 CWD-positive animals may contribute to environmental prion load via decomposing carcasses and biological materials including saliva, blood, urine and feces.57 Sensitivity limitations of conventional assays hamper evaluation of environmental prion loads in soil and water. Here we show the ability of serial protein misfolding cyclic amplification (sPMCA) to amplify a 1.3 × 10−7 dilution of CWD-infected brain homogenate spiked into water samples, equivalent to approximately 5 × 107 protease resistant cervid prion protein (PrPCWD) monomers. We also detected PrPCWD in one of two environmental water samples from a CWD endemic area collected at a time of increased water runoff from melting winter snow pack, as well as in water samples obtained concurrently from the flocculation stage of water processing by the municipal water treatment facility. Bioassays indicated that the PrPCWD detected was below infectious levels. These data demonstrate detection of very low levels of PrPCWD in the environment by sPMCA and suggest persistence and accumulation of prions in the environment that may promote CWD transmission.Key words: prions, chronic wasting disease, water, environment, serial protein misfolding cyclic amplification  相似文献   

2.
In transmissible spongiform encephalopathies (TSE) or prion diseases, the endogenous protease-sensitive prion protein (PrP-sen) of the host is converted to an abnormal pathogenic form that has a characteristic partial protease resistance (PrP-res). Studies with cell-free reactions indicate that the PrP-res itself can directly induce this conversion of PrP-sen. This PrP-res induced conversion reaction is highly specific in ways that might account at the molecular level for TSE species barriers, polymorphism barriers, and strains. Not only has this reaction been observed using mostly purified PrP-sen and PrP-res reactants, but also in TSE-infected brain slices. The conversion mechanism appears to involve both the binding of PrP-sen to polymeric PrP-res and a conformational change that results in incorporation into the PrP-res polymer.  相似文献   

3.
A protease-resistant protein is a structural component of the scrapie prion   总被引:67,自引:0,他引:67  
Fractions purified from scrapie-infected hamster brain contain a unique protein, designated PrP. It was labeled with N-succinimidyl 3-(4-hydroxy-5-[125I]-iodophenyl) propionate, which did not alter the titer of the scrapie prion. The concentration of PrP was found to be directly proportional to the titer of the infectious prion. Both PrP and prion infectivity were resistant for 2 hr at 37 degrees C to hydrolysis by proteinase K under nondenaturing conditions. Prolonging the digestion resulted in a concomitant decrease in both PrP and the scrapie prion. When the amino-acid-specific proteases trypsin or SV-8 protease were used instead of proteinase K, no change in either PrP or the prion was detected. The parallel changes between PrP and the prion provide evidence that PrP is a structural component of the infectious prion. Our findings also suggest that the prion contains only one major protein, namely PrP.  相似文献   

4.
S A Priola  V A Lawson 《The EMBO journal》2001,20(23):6692-6699
A key event in the transmissible spongiform encephalopathies (TSEs) is the formation of aggregated and protease-resistant prion protein, PrP-res, from a normally soluble, protease-sensitive and glycosylated precursor, PrP-sen. While amino acid sequence similarity between PrP-sen and PrP-res influences both PrP-res formation and cross-species transmission of infectivity, the influence of co- or post-translational modifications to PrP-sen is unknown. Here we report that, if PrP-sen and PrP-res are derived from different species, PrP-sen glycosylation can significantly affect PrP-res formation. Glycosylation affected PrP-res formation by influencing the amount of PrP-sen bound to PrP-res, while the amino acid sequence of PrP-sen influenced the amount of PrP-res generated in the post-binding conversion step. Our results show that in addition to amino acid sequence, co- or post-translational modifications to PrP-sen influence PrP-res formation in vitro. In vivo, these modifications might contribute to the resistance to infection associated with transmission of TSE infectivity across species barriers.  相似文献   

5.
Inhibition of the accumulation of protease-resistant prion protein (PrP-res) is a prime strategy in the development of potential transmissible spongiform encephalopathy (TSE) therapeutics. Here we show that curcumin (diferoylmethane), a major component of the spice turmeric, potently inhibits PrP-res accumulation in scrapie agent-infected neuroblastoma cells (50% inhibitory concentration, approximately 10 nM) and partially inhibits the cell-free conversion of PrP to PrP-res. In vivo studies showed that dietary administration of curcumin had no significant effect on the onset of scrapie in hamsters. Nonetheless, other studies have shown that curcumin is nontoxic and can penetrate the brain, properties that give curcumin advantages over inhibitors previously identified as potential prophylactic and/or therapeutic anti-TSE compounds.  相似文献   

6.
Transmissible spongiform encephalopathy diseases are characterized by conversion of the normal protease-sensitive host prion protein, PrP-sen, to an abnormal protease-resistant form, PrP-res. In the current study, deletions were introduced into the flexible tail of PrP-sen (23) to determine if this region was required for formation of PrP-res in a cell-free assay. PrP-res formation was significantly reduced by deletion of residues 34-94 relative to full-length hamster PrP. Deletion of another nineteen amino acids to residue 113 further reduced the amount of PrP-res formed. Furthermore, the presence of additional proteinase K cleavage sites indicated that deletion to residue 113 generated a protease-resistant product with an altered conformation. Conversion of PrP deletion mutants was also affected by post-translational modifications to PrP-sen. Conversion of unglycosylated PrP-sen appeared to alter both the amount and the conformation of protease-resistant PrP-res produced from N-terminally truncated PrP-sen. The N-terminal region also affected the ability of hamster PrP to block mouse PrP-res formation in scrapie-infected mouse neuroblastoma cells. Thus, regions within the flexible N-terminal tail of PrP influenced interactions required for both generating and disrupting PrP-res formation.  相似文献   

7.
A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23-144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD.  相似文献   

8.
Aggregated prion protein (PrPSc), which is detergent-insoluble and partially proteinase K (PK)-resistant, constitutes the major component of infectious prions that cause a group of transmissible spongiform encephalopathies in animals and humans. PrPSc derives from a detergent-soluble and PK-sensitive cellular prion protein (PrPC) through an alpha-helix to beta-sheet transition. This transition confers on the PrPSc molecule unique physicochemical and biological properties, including insolubility in nondenaturing detergents, an enhanced tendency to form aggregates, resistance to PK digestion, and infectivity, which together are regarded as the basis for distinguishing PrPSc from PrPC. Here we demonstrate, using sedimentation and size exclusion chromatography, that small amounts of detergent-insoluble PrP aggregates are present in uninfected human brains. Moreover, PK-resistant PrP core fragments are detectable following PK treatment. This is the first study that provides experimental evidence supporting the hypothesis that there might be silent prions lying dormant in normal human brains.  相似文献   

9.
Prions, the infectious agents of transmissible spongiform encephalopathies, are composed primarily of a misfolded protein designated PrP(Sc). Prion-infected neurons generate PrP(Sc) from a host glycoprotein designated PrP(C) through a process of induced conformational change, but the molecular mechanism by which PrP(C) undergoes conformational change into PrP(Sc) remains unknown. We employed an in vitro PrP(Sc) amplification technique adapted from protein misfolding cyclic amplification (PMCA) to investigate the mechanism of prion-induced protein conformational change. Using this technique, PrP(Sc) from diluted scrapie-infected brain homogenate can be amplified >10-fold without sonication when mixed with normal brain homogenate under nondenaturing conditions. PrP(Sc) amplification in vitro exhibits species and strain specificity, depends on both time and temperature, only requires membrane-bound components, and does not require divalent cations. In vitro amplification of Syrian hamster Sc237 PrP(Sc) displays an optimum pH of approximately 7, whereas amplification of CD-1 mouse RML PrP(Sc) is optimized at pH approximately 6. The thiolate-specific alkylating agent N-ethylmaleimide (NEM) as well as the reversible thiol-specific blockers p-hydroxymercuribenzoic acid (PHMB) and mersalyl acid inhibited PrP(Sc) amplification in vitro, indicating that the conformational change from PrP(C) to PrP(Sc) requires a thiol-containing factor. Our data provide the first evidence that a reactive chemical group plays an essential role in the conformational change from PrP(C) to PrP(Sc).  相似文献   

10.
Several lines of evidence have suggested that copper ions play a role in the biology of both PrP(C) and PrP(Sc), the normal and pathologic forms of the prion protein. To further investigate this intriguing connection, we have analyzed how copper ions affect the biochemical properties of PrP(C) extracted from the brains of transgenic mice and from transfected cells. We report that the metal rapidly and reversibly induces PrP(C) to become protease-resistant and detergent-insoluble. Although these two properties are commonly associated with PrP(Sc), we demonstrate using a conformation-dependent immunoassay that copper-treated PrP is structurally distinct from PrP(Sc). The effect of copper requires the presence of at least one of the five octapeptide repeats normally present in the N-terminal half of the protein, consistent with the idea that the metal alters the biochemical properties of PrP by directly binding to this region. These results suggest potential roles for copper in prion diseases, as well as in the physiological function of PrP(C).  相似文献   

11.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

12.
Prion protein (PrP)(Sc), the only known component of the prion, is present mostly in the brains of animals and humans affected with prion diseases. We now show that a protease-resistant PrP isoform can also be detected in the urine of hamsters, cattle, and humans suffering from transmissible spongiform encephalopathies. Most important, this PrP isoform (UPrP(Sc)) was also found in the urine of hamsters inoculated with prions long before the appearance of clinical signs. Interestingly, intracerebrally inoculation of hamsters with UPrP(Sc) did not cause clinical signs of prion disease even after 270 days, suggesting it differs in its pathogenic properties from brain PrP(Sc). We propose that the detection of UPrP(Sc) can be used to diagnose humans and animals incubating prion diseases, as well as to increase our understanding on the metabolism of PrP(Sc) in vivo.  相似文献   

13.
Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected with CWD. Primary cultures derived from uninfected mule deer brain tissue were transformed by transfection with a plasmid containing the simian virus 40 genome. A transformed cell line (MDB) was exposed to microsomes prepared from the brainstem of a CWD-affected mule deer. CWD-associated, protease-resistant prion protein (PrP(CWD)) was used as an indicator of CWD infection. Although no PrP(CWD) was detected in any of these cultures after two passes, dilution cloning of cells yielded one PrP(CWD)-positive clone out of 51. This clone, designated MDB(CWD), has maintained stable PrP(CWD) production through 32 serial passes thus far. A second round of dilution cloning yielded 20 PrP(CWD)-positive subclones out of 30, one of which was designated MDB(CWD2). The MDB(CWD2) cell line was positive for fibronectin and negative for microtubule-associated protein 2 (a neuronal marker) and glial fibrillary acidic protein (an activated astrocyte marker), consistent with derivation from brain fibroblasts (e.g., meningeal fibroblasts). Two inhibitors of rodent scrapie protease-resistant PrP accumulation, pentosan polysulfate and a porphyrin compound, indium (III) meso-tetra(4-sulfonatophenyl)porphine chloride, potently blocked PrP(CWD) accumulation in MDB(CWD) cells. This demonstrates the utility of these cells in a rapid in vitro screening assay for PrP(CWD) inhibitors and suggests that these compounds have potential to be active against CWD in vivo.  相似文献   

14.
Transmissible spongiform encephalopathy (TSE) diseases are characterized by the accumulation in brain of an abnormal protease-resistant form of the host-encoded prion protein (PrP), PrP-res. PrP-res conformation differs among TSE agents derived from various sources, and these conformational differences are thought to influence the biological characteristics of these agents. In this study, we introduced deletions into the flexible N-terminal region of PrP (residues 34-124) and investigated the effect of this region on the conformation of PrP-res generated in an in vitro cell-free conversion assay. PrP deleted from residues 34 to 99 generated 12-16-kDa protease-resistant bands with intact C termini but variable N termini. The variable N termini were the result of exposure of new protease cleavage sites in PrP-res between residues 130 and 157, suggesting that these new cleavage sites were caused by alterations in the conformation of the PrP-res generated. Similarly truncated 12-16-kDa PrP bands were also identified in brain homogenates from mice infected with mouse-passaged hamster scrapie as well as in the cell-free conversion assay using conditions that mimicked the hamster/mouse species barrier to infection. Thus, by its effects on PrP-res conformation, the flexible N-terminal region of PrP seemed to influence TSE pathogenesis and cross-species TSE transmission.  相似文献   

15.
The pathogenic isoform (PrP(Sc) ) of the host-encoded normal cellular prion protein (PrP(C) ) is believed to be the infectious agent of transmissible spongiform encephalopathies. Spontaneous conversion of α-helix-rich recombinant PrP into the PrP(Sc) -like β-sheet-rich form or aggregation of cytosolic PrP has been found to be accelerated under reducing conditions. However, the effect of reducing conditions on PrP(Sc) -mediated conversion of PrP(C) into PrP(Sc) has remained unknown. In this study, the effect of reducing conditions on the binding of bacterial recombinant mouse PrP (MoPrP) with PrP(Sc) and the conversion of MoPrP into proteinase K-resistant PrP (PrP(res) ) using a cell-free conversion assay was investigated. High concentrations of dithiothreitol did not inhibit either the binding or conversion reactions of PrP(Sc) from five prion strains. Indeed, dithiothreitol significantly accelerated mouse-adapted BSE-seeded conversion. These data suggest that conversion of PrP(Sc) derived from a subset of prion strains is accelerated under reducing conditions, as has previously been shown for spontaneous conversion. Furthermore, the five prion strains used could be classified into three groups according to their efficiency at binding and conversion of MoPrP and cysteine-less mutants under both reducing and nonreducing conditions. The resulting classification is similar to that derived from biological and biochemical strain-specific features.  相似文献   

16.
A conformational transition between the normal cellular prion protein (PrPC) and the beta-sheet-rich pathological isoform (PrPSc) is a central event in the pathogenesis of spongiform encephalopathies. The prion infectious agent seems to contain mainly, if not exclusively, PrPSc, which has the ability to propagate its abnormal conformation by transforming the host PrPC into the pathological isoform. We have developed an in vitro system to induce the PrPC --> PrPSc conversion by incubating a cell-lysate containing mouse PrPC with partially purified mouse PrPSc. After 48 h of incubation with a 10-fold molar excess of PrPSc, the cellular protein acquired PK-resistance resembling a PrPSc-like state. Time course experiments suggest that the conversion follows a stepwise mechanism involving kinetic intermediates. The conversion was induced by PrPSc extracted from mice infected with two different prion strains, each propagating its characteristic Western blot profile. The latter results and the fact that all the cellular components are present in the conversion reaction suggest that PrPC-PrPSc interaction is highly specific and required for the conversion. No transformation was observed under the same conditions using purified proteins without cell-lysate. However, when PrPC-depleted cell-lysate was added to the purified proteins the conversion was recovered. These findings provide direct evidence for the participation of a chaperone-like activity involved in catalyzing the conversion of PrPC into PrPSc.  相似文献   

17.
The precise diagnosis for bovine spongiform encephalopathy (BSE) is crucial for preventing new transmission to humans. Several testing procedures are reported for determining protease-resistant prion protein in various tissues as a major hallmark of prion diseases such as BSE, scrapie, and Creutzfeldt-Jakob disease. However, contamination of materials from tissues or degradation of the specimens sometimes disturbs the accuracy of the assay. Here, we have developed a novel method for solid-phase immunoassay of the disease-specific conformational isoform, PrP(Sc), using filtration blotting of protein in the presence of sodium dodecyl sulfate (SDS) followed by a filtration-based immunoassay with a single anti-prion protein antibody, together with the improved fractionation procedure involving high concentrations of surfactant/detergent. The SDS/heat treatment renders unfolded PrP(Sc) quantitative retention on a polyvinylidene difluoride filter and allows enhancement of the analyte signal with immunodetection; thus, all of the tested specimens are determined with 100% accuracy. In addition, the immunoassay is completed in approximately 1h, indicating its usefulness not only for the screening of BSE specimens but probably also for the postmortem BSE diagnosis of fallen stock as the antibody recognizes the core part of PrP(Sc). The solid-phase immunoassay method, including the filtration blotting with SDS, would be applicable to determining even more sensitively proteins other than PrP(Sc), especially those having rigid conformations.  相似文献   

18.
Transmissible spongiform encephalopathies are accompanied by the accumulation of a pathologic isoform of a host-encoded protein, termed prion protein (PrP). Despite the widespread distribution of the cellular isoform of PrP (protease-sensitive PrP; PrP-sen), the disease-associated isoform (protease-resistant PrP; PrP-res) appears to be primarily restricted to cells of the nervous and lymphoreticular systems. In order to study why scrapie infection appears to be restricted to certain cells, we followed acute and persistent PrP-res formation upon exposure of cells to different scrapie agents. We found that, independent of the cell type and scrapie strain, initial PrP-res formation occurred rapidly in cells. However, sustained generation of PrP-res and persistent infection did not necessarily follow acute PrP-res formation. Persistent PrP-res formation and scrapie infection was restricted to one cell line inoculated with the mouse scrapie strain 22L. In contrast to cells that did not become scrapie-infected, the level of PrP-res in the 22L-infected cells rapidly increased in the absence of a concomitant increase in the number of PrP-res-producing cells. Furthermore, the protein banding pattern of PrP-res in these cells changed over time as the cells became chronically infected. Thus, our results suggest that the events leading to the initial formation of PrP-res may differ from those required for sustained PrP-res formation and infection. This may, at least in part, explain the observation that not all PrP-sen-expressing cells appear to support transmissible spongiform encephalopathy agent replication.  相似文献   

19.
Because a definite diagnosis of prion diseases relies on the detection of the abnormal isoform of prion protein (PrPSc), it has been urgently necessary to establish a non-invasive diagnostic test to detect PrPSc in human prion diseases. To evaluate diagnostic usefulness and reliability of the detection of protease-resistant prion protein in urine, we extensively analyzed proteinase K (PK)-resistant proteins in patients affected with prion diseases and control subjects by Western blot, a coupled liquid chromatography and mass spectrometry analysis, and N-terminal sequence analysis. The PK-resistant signal migrating around 32 kDa previously reported by Shaked et al. (Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., and Gabizon, R. (2001) J. Biol. Chem. 276, 31479-31482) was not observed in this study. Instead, discrete protein bands with an apparent molecular mass of approximately 37 kDa were detected in the urine of many patients affected with prion diseases and two diseased controls. Although these proteins also gave strong signals in the Western blot using a variety of anti-PrP antibodies as a primary antibody, we found that the signals were still detectable by incubation of secondary antibodies alone, i.e. in the absence of the primary anti-PrP antibodies. Mass spectrometry and N-terminal protein sequencing analysis revealed that the majority of the PK-resistant 37-kDa proteins in the urine of patients were outer membrane proteins (OMPs) of the Enterobacterial species. OMPs isolated from these bacteria were resistant to PK and the PK-resistant OMPs from the Enterobacterial species migrated around 37 kDa on SDS-PAGE. Furthermore, nonspecific binding of OMPs to antibodies could be mistaken for PrPSc. These findings caution that bacterial contamination can affect the immunological detection of prion protein. Therefore, the presence of Enterobacterial species should be excluded in the immunological tests for PrPSc in clinical samples, in particular, urine.  相似文献   

20.
Treiber C  Simons A  Multhaup G 《Biochemistry》2006,45(21):6674-6680
The prion protein (PrP) is the key protein implicated in diseases known as transmissible spongiform encephalopathies. PrP has been shown to bind manganese and copper, the latter being involved in the normal function of the protein. Indeed, upon expression in yeast we noted a major increase in intracellular copper and a decrease in manganese. Interestingly, protease-resistant PrP(Sc)-like protein (PrP(res)) formation was induced when PrP-expressing yeast cells were grown in copper- and/or manganese-supplemented media. The pattern of PrP banding in SDS-PAGE was dominantly determined by manganese. This conformational transition was stable against EDTA treatment but not in the presence of the copper chelators bathocuproinedisulfonic acid or clioquinol. Conclusively, PrP itself influences manganese and copper metabolism, and a replacement of copper in PrP complexes with manganese is highly likely under the condition of copper depletion or if excess amounts of copper and manganese are present. Taken together, our present study demonstrates the involvement of PrP in the regulation of intracellular metal ion homeostasis and uncovers copper and, more severely, manganese ions as in vivo risk factors for the conversion into PrP(Sc).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号