首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tau is a neuronal microtubule-associated protein. Its hyperphosphorylation plays a critical role in Alzheimer disease (AD). Expression and phosphorylation of tau are regulated developmentally, but its dynamic regulation and the responsible kinases or phosphatases remain elusive. Here, we studied the developmental regulation of tau in rats during development from embryonic day 15 through the age of 24 months. We found that tau expression increased sharply during the embryonic stage and then became relatively stable, whereas tau phosphorylation was much higher in developing brain than in mature brain. However, the extent of tau phosphorylation at seven of the 14 sites studied was much less in developing brain than in AD brain. Tau phosphorylation during development matched the period of active neurite outgrowth in general. Tau phosphorylation at various sites had different topographic distributions. Several tau kinases appeared to regulate tau phosphorylation collectively at overlapping sites, and the decrease of overall tau phosphorylation in adult brain might be due to the higher levels of tau phosphatases in mature brain. These studies provide new insight into the developmental regulation of site-specific tau phosphorylation and identify the likely sites required for the abnormal hyperphosphorylation of tau in AD.  相似文献   

2.
Hyperphosphorylation of the microtubule binding protein Tau is a feature of a number of neurodegenerative diseases, including Alzheimer's disease. Tau is hyperphosphorylated in the hippocampus of dab1-null mice in a strain-dependent manner; however, it has not been clear if the Tau phosphorylation phenotype is a secondary effect of the morbidity of these mutants. The dab1 gene encodes a docking protein that is required for normal brain lamination and dendritogenesis as part of the Reelin signaling pathway. We show that dab1 gene inactivation after brain development leads to Tau hyperphosphorylation in anatomically normal mice. Genomic regions that regulate the phospho Tau phenotype in dab1 mutants have previously been identified. Using a microarray gene expression comparison between dab1-mutants from the high-phospho Tau expressing and low-phospho Tau expressing strains, we identified Stk25 as a differentially expressed modifier of dab1-mutant phenotypes. Stk25 knockdown reduces Tau phosphorylation in embryonic neurons. Furthermore, Stk25 regulates neuronal polarization and Golgi morphology in an antagonistic manner to Dab1. This work provides insights into the complex regulation of neuronal behavior during brain development and provides insights into the molecular cascades that regulate Tau phosphorylation.  相似文献   

3.
The functions of the neuronal microtubule-associated protein Tau in the central nervous system are regulated by manifold posttranslational modifications at more than 50 sites. Tau in healthy neurons carries multiple phosphate groups, mostly in its microtubule assembly domain. Elevated phosphorylation and aggregation of Tau are widely considered pathological hallmarks in Alzheimer’s disease (AD) and other tauopathies, triggering the quest for Tau posttranslational modifications in the disease context. However, the phosphorylation patterns of physiological and pathological Tau are surprisingly similar and heterogenous, making it difficult to identify specific modifications as therapeutic targets and biomarkers for AD. We present a concise summary of - and view on - important previous and recent advances in Tau phosphorylation analysis in the context of AD.  相似文献   

4.
Tauopathies are a group of neurodegenerative disorders characterised by altered levels of phosphorylation or mutations in the neuronal microtubule protein Tau. The heterogeneous pathology of tauopathies suggests differential susceptibility of different neuronal types to wild-type and mutant Tau. The genetic power and facility of the Drosophila model has been instrumental in exploring the molecular aetiologies of tauopathies, identifying additional proteins likely contributing to neuronal dysfunction and toxicity and novel Tau phosphorylations mediating them. Importantly, recent results indicate tissue- and temporal-specific effects on dysfunction and toxicity coupled with differential effects of distinct Tau isoforms within them. Therefore, they reveal an unexpected richness of the Drosophila model that, coupled with its molecular genetic power, will likely play a significant role in our understanding of multiple tauopathies potentially leading to their differential treatment.  相似文献   

5.
Accumulation of hyperphosphorylated Tau is associated with a number of neurodegenerative diseases collectively known as tauopathies. Differences in clinical and cognitive profiles among them suggest differential sensitivity of neuronal populations to Tau levels, phosphorylation and mutations. We used tissue specific expression of wild type and mutant human tau transgenes to demonstrate differential phosphorylation and stability in a cell type-specific manner, which includes different neuronal types and does not correlate with the level of accumulated protein. Rather, they likely reflect the spatial distribution or regulation of Tau-targeting kinases and phosphatases.  相似文献   

6.
Phosphorylation of the microtubule-associated Tau protein plays a major role in the regulation of its activity of tubulin polymerization and/or stabilization of microtubule assembly. A dysregulation of the phosphorylation/dephosphorylation balance leading to the hyperphosphorylation of Tau proteins in neurons is thought to favor their aggregation into insoluble filaments. This in turn might underlie neuronal death as encountered in many neurodegenerative disorders, including Alzheimer's disease. Another post-translational modification, the O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), controls the phosphorylation state of Tau, although the precise mechanism is not known. Moreover, analytical difficulties have hampered the precise localization of the O-GlcNAc sites on Tau, except for the S400 site that was very recently identified on the basis of ETD-FT-MS. Here, we identify three O-GlcNAc sites by screening a library of small peptides sampling the proline-rich, the microtubule-associated repeats and the carboxy-terminal domains of Tau as potential substrates for the O-β-N-acetylglucosaminyltransferase (OGT). The in vitro activity of the nucleocytoplasmic OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Using phosphorylated peptides, we establish the relationship between phosphate and O-GlcNAc incorporation at these sites. Phosphorylation of neighboring residues S396 and S404 was found to decrease significantly S400 O-GlcNAcylation. Reciprocally, S400 O-GlcNAcylation reduces S404 phosphorylation by the CDK2/cyclinA3 kinase and interrupts the GSK3β-mediated sequential phosphorylation process.  相似文献   

7.
In previous studies we have demonstrated that prion protein (PrP) interacts with tubulin and disrupts microtubular cytoskeleton by inducing tubulin oligomerization. These observations may explain the molecular mechanism of toxicity of cytoplasmic PrP in transmissible spongiform encephalopathies (TSEs). Here, we check whether microtubule associated proteins (MAPs) that regulate microtubule stability, influence the PrP-induced oligomerization of tubulin. We show that tubulin preparations depleted of MAPs are more prone to oligomerization by PrP than those containing traces of MAPs. Tau protein, a major neuronal member of the MAPs family, reduces the effect of PrP. Importantly, phosphorylation of Tau abolishes its ability to affect the PrP-induced oligomerization of tubulin. We propose that the binding of Tau stabilizes tubulin in a conformation less susceptible to oligomerization by PrP. Since elevated phosphorylation of Tau leading to a loss of its function is observed in Alzheimer disease and related tauopathies, our results point at a possible molecular link between these neurodegenerative disorders and TSEs.  相似文献   

8.
The microtubule-associated protein, tau, is involved in numerous neuronal processes such as vesicle transport, microtubule-plasma membrane interaction and the intracellular localization of proteins. Tau is known to be phosphorylated by several kinases such as mitogen activated protein kinase, microtubule affinity regulating kinase, and protein kinase A. We found a putative serum- and glucocorticoid-induced protein kinase 1 (SGK1) phosphorylation site within the 207GSRSRTPSLP216 tau amino acid sequence. We report here that SGK1 phosphorylates Ser214 of Tau. Using a pull-down assay, we found that 14-3-3q interacts with SGK1 and tau to form a ternary protein complex that leads to phosphorylation of tau. 14-3-3 and phosphorylated tau were mainly co-localized in the nucleus of COS-1 cells. These results demonstrate that 14-3-3 scaffolds tau with SGK1 to facilitate the phosphorylation of tau at Ser214 and to regulate its subcellular localization.  相似文献   

9.
Tau is a neuronal protein that stabilizes the microtubule (MT) network, but it also forms filaments associated with Alzheimer''s disease. Understanding Tau–MT and Tau–Tau interactions would help to establish Tau function in health and disease. For many years, literature reports on Tau–MT binding behavior and affinity have remained surprisingly contradictory (e.g., 10-fold variation in Tau–MT affinity). Tau–Tau interactions have also been investigated, but whether MTs might affect Tau filament formation is unknown. We have addressed these issues through binding assays and microscopy. We assessed Tau–MT interactions via cosedimentation and found that the measured affinity of Tau varies greatly, depending on the experimental design and the protein concentrations used. To investigate this dependence, we used fluorescence microscopy to examine Tau–MT binding. Strikingly, we found that Taxol-stabilized MTs promote Tau filament formation without characterized Tau-filament inducers. We propose that these novel Tau filaments account for the incongruence in Tau–MT affinity measurements. Moreover, electron microscopy reveals that these filaments appear similar to the heparin-induced Alzheimer''s model. These observations suggest that the MT-induced Tau filaments provide a new model for Alzheimer''s studies and that MTs might play a role in the formation of Alzheimer''s-associated neurofibrillary tangles.  相似文献   

10.
Protein post-translational modifications (PTMs) that potentiate protein aggregation have been implicated in several neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). In fact, Tau and alpha-synuclein (ASYN) undergo several PTMs potentiating their aggregation and neurotoxicity.Recent data posits a role for acetylation in Tau and ASYN aggregation. Herein we aimed to clarify the role of Sirtuin-2 (SIRT2) and HDAC6 tubulin deacetylases as well as p300 acetyltransferase in AD and PD neurodegeneration. We used transmitochondrial cybrids that recapitulate pathogenic alterations observed in sporadic PD and AD patient brains and ASYN and Tau cellular models.We confirmed that Tau protein and ASYN are microtubules (MTs)-associated proteins (MAPs). Moreover, our results suggest that α-tubulin acetylation induced by SIRT2 inhibition is functionally associated with the improvement of MT dynamic determined by decreased Tau phosphorylation and by increased Tau/tubulin and ASYN/tubulin binding. Our data provide a strong evidence for a functional role of tubulin and MAPs acetylation on autophagic vesicular traffic and cargo clearance. Additionally, we showed that an accumulation of ASYN oligomers imbalance mitochondrial dynamics, which further compromise autophagy. We also demonstrated that an increase in Tau acetylation is associated with Tau phosphorylation. We found that p300, HDAC6 and SIRT2 influences Tau phosphorylation and autophagic flux in AD. In addition, we demonstrated that p300 and HDAC6 modulate Tau and Tubulin acetylation.Overall, our data disclose the role of Tau and ASYN modifications through acetylation in AD and PD pathology, respectively. Moreover, this study indicates that MTs can be a promising therapeutic target in the field of neurodegenerative disorders in which intracellular transport is altered.  相似文献   

11.
Phosphorylation of the neuronal Tau protein is implicated in both the regulation of its physiological function of microtubule stabilization and its pathological propensity to aggregate into the fibers that characterize Alzheimer's diseased neurons. However, how specific phosphorylation events influence both aspects of Tau biology remains largely unknown. In this study, we address the structural impact of phosphorylation of the Tau protein by Nuclear Magnetic Resonance (NMR) spectroscopy on a functional fragment of Tau (Tau[Ser208–Ser324] = TauF4). TauF4 was phosphorylated by the proline‐directed CDK2/CycA3 kinase on Thr231 (generating the AT180 epitope), Ser235, and equally on Thr212 and Thr217 in the Proline‐rich region (Tau[Ser208‐Gln244] or PRR). These modifications strongly decrease the capacity of TauF4 to polymerize tubulin into microtubules. While all the NMR parameters are consistent with a globally disordered Tau protein fragment, local clusters of structuration can be defined. The most salient result of our NMR analysis is that phosphorylation in the PRR stabilizes a short α‐helix that runs from pSer235 till the very beginning of the microtubule‐binding region (Tau[Thr245‐Ser324] or MTBR of TauF4). Phosphorylation of Thr231/Ser235 creates a N‐cap with helix stabilizing role while phosphorylation of Thr212/Thr217 does not induce modification of the local transient secondary structure, showing that the stabilizing effect is sequence specific. Using paramagnetic relaxation experiments, we additionally show a transient interaction between the PRR and the MTBR, observed in both TauF4 and phospho‐TauF4. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer’s disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the 1H,15N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.  相似文献   

13.
Tau microtubule-associated proteins constitute a group of developmentally regulated neuronal proteins. Using the high-resolution two-dimensional polyacrylamide gel electrophoresis system, we have resolved more than 60 distinct Tau isoforms in the adult mouse brain. Tau protein heterogeneity increases drastically during the second week of brain development. In neuronal primary cell cultures, some of these developmental changes can be observed. The increase of Tau heterogeneity in culture is more limited and reaches a plateau after a period corresponding to the second week of development. Most, if not all, of the vast Tau heterogeneity can be attributed to intensive post-translational phosphorylation, which may affect the structure of the proteins.  相似文献   

14.
Numerous enzymes hyperphosphorylate Tau in vivo, leading to the formation of neurofibrillary tangles (NFTs) in the neurons of Alzheimer's disease (AD). Compared with age-matched normal controls, we demonstrated here that the protein levels of WW domain-containing oxidoreductase WOX1 (also known as WWOX or FOR), its Tyr33-phosphorylated form, and WOX2 were significantly down-regulated in the neurons of AD hippocampi. Remarkably knock-down of WOX1 expression by small interfering RNA in neuroblastoma SK-N-SH cells spontaneously induced Tau phosphorylation at Thr212/Thr231 and Ser515/Ser516, enhanced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and ERK, and enhanced NFT formation. Also an increased binding of phospho-GSK-3beta with phospho-Tau was observed in these WOX1 knock-down cells. In comparison, increased phosphorylation of Tau, GSK-3beta, and ERK, as well as NFT formation, was observed in the AD hippocampi. Activation of JNK1 by anisomycin further increased Tau phosphorylation, and SP600125 (a JNK inhibitor) and PD-98059 (an MEK1/2 inhibitor) blocked Tau phosphorylation and NFT formation in these WOX1 knock-down cells. Ectopic or endogenous WOX1 colocalized with Tau, JNK1, and GSK-3beta in neurons and cultured cells. 17Beta-estradiol, a neuronal protective hormone, increased the binding of WOX1 and GSK-3beta with Tau. Mapping analysis showed that WOX1 bound Tau via its COOH-terminal short-chain alcohol dehydrogenase/reductase domain. Together WOX1 binds Tau via its short-chain alcohol dehydrogenase/reductase domain and is likely to play a critical role in regulating Tau hyperphosphorylation and NFT formation in vivo.  相似文献   

15.
The cause of protein accumulation in neurodegenerative disease is incompletely understood. In Alzheimer's disease (AD), the axonally enriched protein Tau forms hyperphosphorylated aggregates in the somatodendritic domain. Consequently, a process of subcellular relocalization driven by Tau phosphorylation and detachment from microtubules has been proposed. Here, we reveal an alternative mechanism of de novo protein synthesis of Tau and its hyperphosphorylation in the somatodendritic domain, induced by oligomeric amyloid‐β (Aβ) and mediated by the kinase Fyn that activates the ERK/S6 signaling pathway. Activation of this pathway is demonstrated in a range of cellular systems, and in vivo in brains from Aβ‐depositing, Aβ‐injected, and Fyn‐overexpressing mice with Tau accumulation. Both pharmacological inhibition and genetic deletion of Fyn abolish the Aβ‐induced Tau overexpression via ERK/S6 suppression. Together, these findings present a more cogent mechanism of Tau aggregation in disease. They identify a prominent role for neuronal Fyn in integrating signal transduction pathways that lead to the somatodendritic accumulation of Tau in AD.  相似文献   

16.
Tau, a neuronal protein involved in neurodegenerative disorders such as Alzheimer disease, which is primarily described as a microtubule-associated protein, has also been observed in the nuclei of neuronal and non-neuronal cells. However, the function of the nuclear form of Tau in neurons has not yet been elucidated. In this work, we demonstrate that acute oxidative stress and mild heat stress (HS) induce the accumulation of dephosphorylated Tau in neuronal nuclei. Using chromatin immunoprecipitation assays, we demonstrate that the capacity of endogenous Tau to interact with neuronal DNA increased following HS. Comet assays performed on both wild-type and Tau-deficient neuronal cultures showed that Tau fully protected neuronal genomic DNA against HS-induced damage. Interestingly, HS-induced DNA damage observed in Tau-deficient cells was completely rescued after the overexpression of human Tau targeted to the nucleus. These results highlight a novel role for nuclear Tau as a key player in early stress response.  相似文献   

17.
Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability.  相似文献   

18.
Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABA(A) receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABA(A) receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABA(A) receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3β kinase activity.  相似文献   

19.
Progesterone exerts a variety of actions in the brain, where it is rapidly metabolized to 5alpha-dihydroprogesterone (DHP) and 3alpha,5alpha-tetrahydroprogesterone (THP). The effect of progesterone and its metabolites on the expression and phosphorylation of the microtubule-associated protein Tau and glycogen synthase kinase 3beta (GSK3beta), a kinase involved in Tau phosphorylation, were assessed in two progesterone-sensitive brain areas: the hypothalamus and the cerebellum. Administration of progesterone, DHP, and THP to ovariectomized rats did not affect Tau and GSK3beta assessed in whole hypothalamic homogenates. In contrast, progesterone and its metabolites resulted in a significant decrease in the expression of Tau and GSK3beta in the cerebellum. Furthermore, progesterone administration resulted in an increase in the phosphorylation of two epitopes of Tau (Tau-1 and PHF-1) phosphorylated by GSK3beta, but did not affect the phosphorylation of an epitope of Tau (Ser262) that is GSK3beta insensitive. These effects were accompanied by a decrease in the phosphorylation of GSK3beta in serine, which is associated to an increase in its activity, suggesting that the effect of progesterone on Tau-1 and PHF-1 phosphorylation in the cerebellum is mediated by GSK3beta. The regulation of Tau expression and phosphorylation by progesterone may contribute to the hormonal regulation of cerebellar function by the modification of neuronal cytoskeleton.  相似文献   

20.
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, the recent discovery of tau gene mutations in fronto-temporal dementia with parkinsonism linked to chromosome 17 has reinforced the direct role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies. Conversely, recent data in myotonic dystrophy has demonstrated that indirect effect (CTG repeat expansion) leading to variations in tau alternative splicing also produce neurofibrillary degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号