首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokines are important mediators of the immune response that are responsible for the trafficking of immune cells between lymphoid organs and migration towards sites of inflammation. Using phage display selection and a functional screening approach, we have isolated a panel of single-chain fragment variable (scFv) capable of neutralizing the activity of the human chemokine CXCL10 (hCXCL10). One of the isolated scFv was weakly cross-reactive against another human chemokine CXCL9, but was unable to block its biological activity. We diversified the complementarity determining region 3 (CDR3) of the light chain variable domain (VL) of this scFv and combined phage display with high throughput antibody array screening to identify variants capable of neutralizing both chemokines. Using this approach it is therefore possible to engineer pan-specific antibodies that could prove very useful to antagonize redundant signaling pathways such as the chemokine signaling network.Key words: cross-reactive antibody, antibody arrays, chemotaxis, multiple targeting, affinity maturation, phage display  相似文献   

2.
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.  相似文献   

3.
4.
利用噬菌体展示技术筛选特异性人源抗ICAM-1单链抗体(Anti-human ICAM-1 scFv)并进行生物学活性鉴定。应用Tomlinson I+J噬菌体抗体库,以P1抗原肽为包被抗原,经过4轮“吸附-洗脱-扩增”进行亲和富集筛选。以PCR反应、ELISA抗原交叉反应和Dot blotting实验进行阳性克隆的鉴定。scFv经原核表达和分离纯化后,以Western blotting实验、竞争ELISA实验和细胞黏附抑制实验对其生物学活性进行初步鉴定。Tomlinson I+J噬菌体抗体库经4轮亲和富集筛选,利用ELISA方法成功筛出4株阳性克隆。通过PCR鉴定反应、ELISA抗原交叉反应和Dot blotting实验,最终获得了1株既能与P1抗原肽特异结合又能与人ICAM-1抗原特异结合的阳性克隆J-A1。对scFv进行原核表达和亲和层析后获得了高纯度的目的蛋白。竞争ELISA实验和细胞黏附抑制实验证实纯化的scFv具有良好的亲和活性和抗细胞黏附活性。文中成功利用噬菌体展示技术筛选到特异性人源抗ICAM-1 scFv,为进一步探索该抗体在炎症相关性疾病治疗中的应用奠定了基础。  相似文献   

5.
The aim of the present study was to discover distinct human MAbs to RV with high neutralizing potency and a broad neutralization spectrum. A phage display technology was used to produce human scFv to G5, a conserved linear neutralization epitope on Gp of RV. A phage display scFv library with 6 x 10(7) members was constructed and the phage-scFv with 'antigen-binding' activities were selected with synthetic peptide G5-24. The obtained scFv genes were cloned into pET22b(+)/BL21(DE3) and from this we prepared purified scFv fragments. The assay of the specificity characteristics and neutralization capacity showed that two distinct clones with new human immunoglobulin V genes can recognize G5 specifically as well as neutralize different RV strains. They have potential for inclusion in an antibodies combination aimed for use in rabies PEP.  相似文献   

6.
《MABS-AUSTIN》2013,5(4):542-550
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene.

In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.  相似文献   

7.
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.  相似文献   

8.
噬菌体抗体库的构建及抗乳腺癌细胞单链抗体的筛选   总被引:3,自引:0,他引:3  
构建抗人乳腺癌细胞MCF 7的噬菌体单链抗体库 ,从中筛选MCF 7细胞特异性单链抗体。用MCF-7细胞免疫BALB C小鼠 ,取脾脏 ,提取总RNA ,用RT-PCR技术扩增小鼠抗体重链 (VH)和轻链 (VL)可变区基因 ,经重叠PCR(SOE-PCR) ,在体外将VH和VL连接成单链抗体 (scFv)基因 ,并克隆到噬菌粒载体pCANTAB5E中 ,电转化至大肠杆菌TG1,经辅助噬菌体超感染 ,构建噬菌体单链抗体库。从该抗体库中筛选特异性识别MCF-7细胞的噬菌体单链抗体 ,将表面展示单链抗体的单克隆噬菌体转化大肠杆菌TOP10进行可溶性表达。成功地构建了库容为12×106 的抗MCF-7乳腺癌细胞的单链抗体库 ,初步筛选到了与MCF 7细胞特异性结合的scFv,Westernblot检测表明 ,在大肠杆菌TOP10中实现了单链抗体可溶性表达  相似文献   

9.
Phage display technology is an effective approach to the development of the next generation of immunodiagnostic reagents. Naive murine phage display a library of single-chain variable antibodies (scFv) was used to isolate scFv recognizing the diphtheria toxin, an important diagnostic antigen of diphtheria. The diphtheria toxin B subunit-binding clone with affinity constant of 1.13 x 10(7) M(-1) was selected. scFv preserved activity on storage in the course of 8 months.  相似文献   

10.
With the long-term goal of generating CMV-resistant transgenic plants using antibody genes, a single-chain variable fragment (scFv) antibody that binds to the cucumber mosaic virus was isolated from a scFv phage display library by four rounds of affinity selection with CMV-Mf as an antigen. The scFv has the identical binding specificity to CMV as a monoclonal antibody that is generated by the hybridoma fusion technique, and recognized purified preparations of CMV isolates belonging to either subgroup I or II in immunoblotting. The nucleotide sequences of the recombinant antibody showed that a heavy chain variable region (V(H)) gene belonged to the VH3 subgroup and the kappa light chain variable region (V kappa) came from the Vkappa4 subgroup. Our results demonstrate that the scFv phage display library, an alternative approach to the traditional hybridoma fusion technique, has a potential applicability in the study of plant virus and plant pathology.  相似文献   

11.
White spot syndrome virus (WSSV) is one of the most significant viral pathogens causing high mortality and economic damage in shrimp aquaculture. Although intensive efforts were undertaken to detect and characterize WSSV infection in shrimp during the last decade, we still lack methods either to prevent or cure white spot disease. Most of the studies on neutralizing antibodies from sera have been performed using in vivo assays. For the first time, we report use of an in vitro screening method to obtain a neutralizing scFv antibody against WSSV from a previously constructed anti-WSSV single chain fragment variable region (scFv) antibody phage display library. From clones that were positive for WSSV by ELISA, 1 neutralizing scFv antibody was identified using an in vitro screening method based on shrimp primary lymphoid cell cultures. The availability of a neutralizing antibody against the virus should accelerate identification of infection-related genes and the host cell receptor, and may also enable new approaches to the prevention and cure of white spot disease.  相似文献   

12.
Toward selection of internalizing antibodies from phage libraries   总被引:11,自引:0,他引:11  
Antibodies which bind cell surface receptors in a manner whereby they are endocytosed are useful molecules for the delivery of drugs, toxins, or DNA into the cytosol of mammalian cells for therapeutic applications. Traditionally, internalizing antibodies have been identified by screening hybridomas. For this work, we studied a human scFv (C6.5) which binds ErbB2 to determine the feasibility of directly selecting internalizing antibodies from phage libraries and to identify the most efficient display format. Using wild-type C6.5 scFv displayed monovalently on a phagemid, we demonstrate that anti-ErbB2 phage antibodies can undergo receptor-mediated endocytosis. Using affinity mutants and dimeric diabodies of C6.5 displayed as either single copies on a phagemid or multiple copies on phage, we define the role of affinity, valency, and display format on phage endocytosis and identify the factors that lead to the greatest enrichment for internalization. Phage displaying bivalent diabodies or multiple copies of scFv were more efficiently endocytosed than phage displaying monomeric scFv and recovery of infectious phage was increased by preincubation of cells with chloroquine. Measurement of phage recovery from within the cytosol as a function of applied phage titer indicates that it is possible to select for endocytosable antibodies, even at the low concentrations that would exist for a single phage antibody member in a library of 10(9).  相似文献   

13.
B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) family and a key regulator of B cell response. Neutralizing single-chain fragment variable (scFv) antibody against BLyS binding to its receptor BCMA has the potential to play a prominent role in autoimmune disease therapy. A phage display scFv library constructed on pill protein of MI 3 filamentous phage was screened using BLyS.After five rounds of panning, their binding activity was characterized by phage-ELISA. Nucleotide sequencing revealed that at least two different scFv gene fragments (C305 and D416) were obtained. The two different scFv gene fragments were expressed to obtain the soluble scFv antibodies, then the soluble scFv antibodies were characterized by means of competitive ELISA and in vitro neutralization assay. The results indicated that C305 is the neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA.  相似文献   

14.
BackgroundBotulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure.ResultsIn this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay.ConclusionThese scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development.  相似文献   

15.
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.  相似文献   

16.
CXCL10 (or Interferon-inducible protein of 10 kDa, IP-10) is an interferon-inducible chemokine with potent chemotactic activity on activated effector T cells and other leukocytes expressing its high affinity G protein-coupled receptor CXCR3. CXCL10 is also active on other cell types, including endothelial cells and fibroblasts. The mechanisms through which CXCL10 mediates its effects on non-leukocytes is not fully understood. In this study, we focus on the anti-proliferative effect of CXCL10 on endothelial cells, and demonstrate that CXCL10 can inhibit endothelial cell proliferation in vitro independently of CXCR3. Four main findings support this conclusion. First, primary mouse endothelial cells isolated from CXCR3-deficient mice were inhibited by CXCL10 as efficiently as wildtype endothelial cells. We also note that the proposed alternative splice form CXCR3-B, which is thought to mediate CXCL10''s angiostatic activity, does not exist in mice based on published mouse CXCR3 genomic sequences as an in-frame stop codon would terminate the proposed CXCR3-B splice variant in mice. Second, we demonstrate that human umbilical vein endothelial cells and human lung microvascular endothelial cells that were inhibited by CXL10 did not express CXCR3 by FACS analysis. Third, two different neutralizing CXCR3 antibodies did not inhibit the anti-proliferative effect of CXCL10. Finally, fourth, utilizing a panel of CXCL10 mutants, we show that the ability to inhibit endothelial cell proliferation correlates with CXCL10''s glycosaminoglycan binding affinity and not with its CXCR3 binding and signaling. Thus, using a very defined system, we show that CXCL10 can inhibit endothelial cell proliferation through a CXCR3-independent mechanism.  相似文献   

17.
B型肉毒毒素重链C-端片段(BoNTB/Hc)经金属螯和层析法纯化后免疫Balb/c小鼠,从其脾淋巴细胞中提取总RNA,反转录成cDNA,用抗体可变区混合引物进行全套抗体重、轻链可变区基因的扩增,体外随机装配成单链抗体(scFv)。将其克隆至pCANTAB5E中,构建单链抗体噬菌体抗体库。结果表明经过4轮"吸附-洗脱-扩增"的富集过程,筛选获得高亲和力的克隆。序列测定符合抗体可变区结构特点。  相似文献   

18.

Background

CC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis.

Methodology

Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.

Significance

For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.  相似文献   

19.
In order to obtain recombinant antibody fragments that bind the cell-cycle protein CDC2a from Arabidopsis thaliana (CDC2aAt), two phage display libraries of single-chain variable (scFv) fragments were constructed. One library was derived from mice immunized with recombinant CDC2aAt N-terminally fused to a His6-tag (His-CDC2aAt) and the other was made out of an anti-PSTAIRE hybridoma cell line. Six specific His-CDC2aAt-binding phage clones (3D1, 3D2, 3D10, 3D25, 4D21 and 4D47) were isolated by panning. The isolated monoclonal phage clones, as well as the soluble scFv fragments produced in the periplasm of Escherichia coli, bind His-CDC2aAt in ELISA and on Western blots. Moreover, four clones (3D1, 3D2, 3D10 and 4D21) detect specifically CDC2aAt from Arabidopsis cell suspensions on Western blots. Clone 4D21 binds the PSTAIRE epitope, whereas the 3D1, 3D2 and 3D10 clones bind, as yet unidentified, epitopes of CDC2aAt. Furthermore, the accumulation and antigen-binding activity of these scFv fragments in a reducing environment were assessed. No interaction could be shown between the scFv fragments and CDC2aAt in a yeast two-hybrid assay. However, after transient expression of the scFv fragments in the cytosol of tobacco leaves, three of six scFv fragments (3D1, 3D2 and 3D10) accumulated in the plant cytosol and ELISA results indicate that these scFv fragments retained antigen-binding activity.  相似文献   

20.
单链抗体(single chain antibody fragment,scFv)是由抗体重链可变区(variable region of heavy chain,VH)和轻链可变区(variable region of light chain,VL)通过柔性短肽连接组成的小分子,是具有完整抗原结合活性的最小功能片段,包含抗体识别及抗原结合部位。相比于其他抗体,scFv具有分子量小、穿透性强、免疫原性弱、易构建表达等优点。目前,scFv最常用的展示系统主要有噬菌体展示系统、核糖体展示系统、mRNA展示系统、酵母细胞表面展示系统和哺乳动物细胞展示系统等。近年来,随着scFv在医学、生物学、食品安全学等领域的发展,使得其在生物合成和应用研究方面备受关注。本文对近年来scFv展示系统的研究进展作一综述,以期为scFv的筛选及应用提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号