首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibody's lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.  相似文献   

2.
A new modality in antibody engineering has emerged in which the antigen affinity is designed to be pH dependent (PHD). In particular, combining high affinity binding at neutral pH with low affinity binding at acidic pH leads to a novel antibody that can more effectively neutralize the target antigen while avoiding antibody-mediated antigen accumulation. Here, we studied how the in vivo pharmacokinetics of the superantigen, Staphylococcal enterotoxin B (SEB), is affected by an engineered antibody with pH-dependent binding. PHD anti-SEB antibodies were engineered by introducing mutations into a high affinity anti-SEB antibody, 3E2, by rational design and directed evolution. Three antibody mutants engineered in the study have an affinity at pH 6.0 that is up to 68-fold weaker than the control antibody. The pH dependency of each mutant, measured as the pH-dependent affinity ratio (PAR – ratio of affinity at pH 7.4 and pH 6.0), ranged from 6.7–11.5 compared to 1.5 for the control antibody. The antibodies were characterized in mice by measuring their effects on the pharmacodynamics and pharmacokinetics (PK) of SEB after co-administration. All antibodies were effective in neutralizing the toxin and reducing the toxin-induced cytokine production. However, engineered PHD antibodies led to significantly faster elimination of the toxin from the circulation than wild type 3E2. The area under the curve computed from the SEB PK profile correlated well with the PAR value of antibody, indicating the importance of fine tuning the pH dependency of binding. These results suggest that a PHD recycling antibody may be useful to treat intoxication from a bacterial toxin by accelerating its clearance.  相似文献   

3.
Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5-6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.  相似文献   

4.
Monoclonal antibodies have become a general modality in therapeutic development. However, even with infinite binding affinity to an antigen, a conventional antibody is limited in that it can bind to the antigen only once, and this results in antigen-mediated antibody clearance when the a membrane-bound antigen is targeted, or in antibody-mediated antigen accumulation when a soluble antigen is targeted. Recently, a pH-dependent antigen-binding antibody that binds to an antigen in plasma at neutral pH and dissociates from the antigen in endosome at acidic pH has been reported to overcome this limitation and to reduce antigen-mediated antibody clearance and antibody-mediated antigen accumulation. A pH-dependent binding antibody against a soluble antigen can be further improved by Fc engineering to enhance the Fc receptor binding. Various approaches, including histidine-based engineering, direct cloning from immunized animals, and synthetic and combinatorial libraries, have been successfully applied to generate pH-dependent binding antibodies against various antigens. This review discusses the features, approaches, advantages, and challenges of developing a pH-dependent binding antibody as a novel therapeutic modality. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

5.
《MABS-AUSTIN》2013,5(1):273-285
The functional dichotomy of antibodies against interleukin-2 (IL-2) is thought to depend upon recognition of different cytokine epitopes. Beyond functional studies, the only molecular evidence obtained so far located the epitopes recognized by the immunoenhancing antibodies S4B6 and JES6–5H4 within the predicted interface of IL-2 with the α receptor subunit, explaining the preferential stimulation of effector cells displaying only β and γ receptor chains. A consistent functional map of the epitope bound by the immunoregulatory antibody JES6-1A12 has now been delineated by screening the interactions of phage-displayed antigen variants (with single and multiple mutations) and antigen mimotopes. The target determinant resides in a region between the predicted interfaces with α and β/γ receptor subunits, supporting the dual inhibitory role of the antibody on both interactions. Binding by JES6-1A12 would thus convert complexed IL-2 into a very weak agonist, reinforcing the advantage of T regulatory cells (displaying the high affinity αβγ heterotrimeric receptor) to capture the cytokine by competition and expand over effector cells, ultimately resulting in the observed strong tolerogenic effect of this antibody. Detailed knowledge of the epitopes recognized by anti-IL-2 antibodies with either immunoenhancing or immunoregulatory properties completes the molecular scenario underlying their use to boost or inhibit immune responses in multiple experimental systems. The expanded functional mapping platform now available could be exploited to study other interactions involving related molecular pairs with the final goal of optimizing cytokine and anti-cytokine therapies.  相似文献   

6.
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.  相似文献   

7.
The Herpes Simplex Virus 1 (HSV-1) glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG). gE-gI can also participate in antibody bipolar bridging (ABB), a process by which the antigen-binding fragments (Fabs) of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI–bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI–dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.  相似文献   

8.
The effects of charged residues in peptide antigens on the binding characteristics of polyclonal antipeptide antibodies were studied using immunoadsorbents prepared by coupling the antibodies to CNBr-activated Sepharose 4B. Among the antipeptide antibodies, an antibody to the peptide without charged residues showed the most stable interaction with the peptide to the changes in pH. Conversely, the binding affinity of antibodies to the pep-tides with histidine residues having a unique pKa value of 6.0 decreased steeply with pH at around 6.0. The binding affinity of an antibody to the peptide with many charged residues decreased steeply with an increase in the ionic strength (adjusted by NaCl). Since circular dichroism (CD) spectrum measurements indicate that these peptides show disordered structures in the pH range of adsorption measurement, the dependence of peptide-antibody interaction on environmental conditions is attributed to the characteristics of side chains of the peptides. These results indicate that the dependence of the binding affinity of antipeptide antibodies on pH and the ionic strength is dominantly affected by the number and the pKa values of charged residues in the peptides.  相似文献   

9.
Specific, high affinity protein-protein interactions lie at the heart of many essential biological processes, including the recognition of an apparently limitless range of foreign proteins by natural antibodies, which has been exploited to develop therapeutic antibodies. To mediate biological processes, high affinity protein complexes need to form on appropriate, relatively rapid timescales, which presents a challenge for the productive engagement of complexes with large and complex contact surfaces (∼600–1800 Å2). We have obtained comprehensive backbone NMR assignments for two distinct, high affinity antibody fragments (single chain variable and antigen-binding (Fab) fragments), which recognize the structurally diverse cytokines interleukin-1β (IL-1β, β-sheet) and interleukin-6 (IL-6, α-helical). NMR studies have revealed that the hearts of the antigen binding sites in both free anti-IL-1β Fab and anti-IL-6 single chain variable exist in multiple conformations, which interconvert on a timescale comparable with the rates of antibody-antigen complex formation. In addition, we have identified a conserved antigen binding-induced change in the orientation of the two variable domains. The observed conformational heterogeneity and slow dynamics at protein antigen binding sites appears to be a conserved feature of many high affinity protein-protein interfaces structurally characterized by NMR, suggesting an essential role in protein complex formation. We propose that this behavior may reflect a soft capture, protein-protein docking mechanism, facilitating formation of high affinity protein complexes on a timescale consistent with biological processes.  相似文献   

10.
Specific antigen/antibody interactions measured by force microscopy.   总被引:11,自引:2,他引:9       下载免费PDF全文
Molecular recognition between biotinylated bovine serum albumin and polyclonal, biotin-directed IG antibodies has been measured directly under various buffer conditions using an atomic force microscope (AFM). It was found that even highly structured molecules such as IgG antibodies preserve their specific affinity to their antigens when probed with an AFM in the force mode. We could measure the rupture force between individual antibody-antigen complexes. The potential and limitations of this new approach for the measurement of individual antigen/antibody interactions and some possible applications are discussed.  相似文献   

11.
The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody.  相似文献   

12.
Using a combination of nanoflow-electrospray ionization and time-of-flight mass spectrometry we have analyzed the oligomeric state of the recombinant V antigen from Yersinia pestis, the causative agent of plague. The mass spectrometry results show that at pH 6.8 the V antigen in solution exists predominantly as a dimer and a weakly associated tetramer. A monoclonal antibody 7.3, raised against the V antigen, gave rise to mass spectra containing a series of well-resolved charge states at m/z 6000. After addition of aliquots of solution containing V antigen in substoichiometric and molar equivalents, the spectra revealed that two molecules of the V antigen bind to the antibody. Collision-induced dissociation of the antibody-antigen complex results in the selective release of the dimer from the complex supporting the proposed 1:2 antibody:antigen stoichiometry. Control experiments with the recombinant F1 antigen, also from Yersinia pestis, establish that the antibody is specific for the V antigen because no complex with F1 was detected even in the presence of a 10-fold molar excess of F1 antigen. More generally this work demonstrates a rapid means of assessing antigen subunit interactions as well as the stoichiometry and specificity of binding in antibody-antigen complexes.  相似文献   

13.
We have developed a system to identify highly specific antibody-antigen interactions by protein array screening. This removes the need for selection using animal immunisation or in vitro techniques such as phage or ribosome display. We screened an array of 27 648 human foetal brain proteins with 12 well-expressed antibody fragments that had not previously been exposed to any antigen. Four highly specific antibody-antigen pairs were identified, including three antibodies that bind proteins of unknown function. The target proteins were expressed at a very low copy number on the array, emphasising the unbiased nature of the screen. The specificity and sensitivity of binding demonstrates that this 'naive' screening approach could be applied to the high throughput isolation of specific antibodies against many different targets in the human proteome.  相似文献   

14.
Quantitative protein profiling using antibody arrays   总被引:4,自引:0,他引:4  
Barry R  Soloviev M 《Proteomics》2004,4(12):3717-3726
Traditional approaches to microarrays rely on direct binding assays where the extent of hybridisation and the signal detected are a measure of the analyte concentration in the experimental sample. This approach, directly imported from the nucleic acid field, may fail if applied to antibody-antigen interactions due to the shortage of characterised antibodies, the significant heterogeneity of antibody affinities, their dependence on the extent of protein modification during labelling and the inherent antibody cross-reactivity. These problems can potentially limit the multiplexing capabilities of protein affinity assays and in many cases rule out quantitative protein profiling using antibody microarrays. A number of approaches aimed at achieving quantitative protein profiling in a multiplex format have been reported recently. Of those reported, the three most promising routes include signal amplification, multicolour detection and competitive displacement approaches to multiplex affinity assays. One in particular, competitive displacement, also overcomes the problems associated with quantitation of affinity interactions and provides the most generic approach to highly parallel affinity assays, including antibody arrays.  相似文献   

15.
The functional dichotomy of antibodies against interleukin-2 (IL-2) is thought to depend upon recognition of different cytokine epitopes. Beyond functional studies, the only molecular evidence obtained so far located the epitopes recognized by the immunoenhancing antibodies S4B6 and JES6–5H4 within the predicted interface of IL-2 with the α receptor subunit, explaining the preferential stimulation of effector cells displaying only β and γ receptor chains. A consistent functional map of the epitope bound by the immunoregulatory antibody JES6-1A12 has now been delineated by screening the interactions of phage-displayed antigen variants (with single and multiple mutations) and antigen mimotopes. The target determinant resides in a region between the predicted interfaces with α and β/γ receptor subunits, supporting the dual inhibitory role of the antibody on both interactions. Binding by JES6-1A12 would thus convert complexed IL-2 into a very weak agonist, reinforcing the advantage of T regulatory cells (displaying the high affinity αβγ heterotrimeric receptor) to capture the cytokine by competition and expand over effector cells, ultimately resulting in the observed strong tolerogenic effect of this antibody. Detailed knowledge of the epitopes recognized by anti-IL-2 antibodies with either immunoenhancing or immunoregulatory properties completes the molecular scenario underlying their use to boost or inhibit immune responses in multiple experimental systems. The expanded functional mapping platform now available could be exploited to study other interactions involving related molecular pairs with the final goal of optimizing cytokine and anti-cytokine therapies.  相似文献   

16.
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.  相似文献   

17.
Engineered human IgG antibodies with longer serum half-lives in primates   总被引:3,自引:0,他引:3  
The neonatal Fc receptor (FcRn) plays an important role in regulating the serum half-lives of IgG antibodies. A correlation has been established between the pH-dependent binding affinity of IgG antibodies to FcRn and their serum half-lives in mice. In this study, molecular modeling was used to identify Fc positions near the FcRn binding site in a human IgG antibody that, when mutated, might alter the binding affinity of IgG to FcRn. Following mutagenesis, several IgG2 mutants with increased binding affinity to human FcRn at pH 6.0 were identified at Fc positions 250 and 428. These mutants do not bind to human FcRn at pH 7.5. A pharmacokinetics study of two mutant IgG2 antibodies with increased FcRn binding affinity indicated that they had serum half-lives in rhesus monkeys approximately 2-fold longer than the wild-type antibody.  相似文献   

18.
Structure, function and properties of antibody binding sites   总被引:18,自引:0,他引:18  
Do antibody combining sites possess general properties that enable them to bind different antigens with varying affinities and to bind novel antigens? Here, we address this question by examining the physical and chemical characteristics most favourable for residues involved in antigen accommodation and binding. Amphipathic amino acids could readily tolerate the change of environment from hydrophilic to hydrophobic that occurs upon antibody-antigen complex formation. Residues that are large and can participate in a wide variety of van der Waals' and electrostatic interactions would permit binding to a range of antigens. Amino acids with flexible side-chains could generate a structurally plastic region, i.e. a binding site possessing the ability to mould itself around the antigen to improve complementarity of the interacting surfaces. Hence, antibodies could bind to an array of novel antigens using a limited set of residues interspersed with more unique residues to which greater binding specificity can be attributed. An individual antibody molecule could thus be cross-reactive and have the capacity to bind structurally similar ligands. The accommodation of variations in antigenic structure by modest combining site flexibility could make an important contribution to immune defence by allowing antibody binding to distinct but closely related pathogens. Tyr and Trp most readily fulfil these catholic physicochemical requirements and thus would be expected to be common in combining sites on theoretical grounds. Experimental support for this comes from three sources, (1) the high frequency of participation by these amino acids in the antigen binding observed in six crystallographically determined antibody-antigen complexes, (2) their frequent occurrence in the putative binding regions of antibodies as determined from structural and sequence data and (3) the potential for movement of their side-chains in known antibody binding sites and model systems. The six bound antigens comprise two small different haptens, non-overlapping regions of the same large protein and a 19 amino acid residue peptide. Out of a total of 85 complementarity determining region positions, only 37 locations (plus 3 framework) are directly involved in antigen interaction. Of these, light chain residue 91 is utilized by all the complexes examined, whilst light chain 32, light chain 96 and heavy chain 33 are employed by five out of the six. The binding sites in known antibody-antigen complexes as well as the postulated combining sites in free Fab fragments show similar characteristics with regard to the types of amino acids present. The possible role of other amino acids is also assessed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
Tissue mast cells (TMC) are known to react with antibodies against various regulatory peptides (RP). The specificity of such reactions was investigated by various methods in this study. When normal immunohistochemical staining procedures were employed. TMC in the vermiform appendix and in a cutaneous mastocytoma reacted with antibodies against ACTH, Leu-enkephalin, Met-enkephalin, and peptide histidine isoleucine (PHI). Antibody specificity was tested by absorption controls, and staining specificity by varying the concentration of the primary antibodies and the pH and sodium chloride concentration of the buffer used for rinsing and diluting. In absorption controls, staining of the TMC by anti-PHI was diminished but staining by anti-ACTH, anti-Leu-enkephalin, and anti-Met-enkephalin remained unchanged. Unlike control reactions, immunostaining of TMC with antibodies against RP exhibited marked dependence on antibody concentration and the pH and sodium chloride concentration of the buffer. Alkalization of the buffer led to an obvious increase in the reaction with antibodies against RP, and lowering the pH to 6.0 usually resulted in abolition of the reaction. These results indicate that the immunostaining of TMC with antibodies against RP, including PHI, was nonspecific. It is postulated that the granules of TMC bind certain antibodies by a cation-exchange mechanism involving ionic interactions with positively charged groups in the F(ab')2 and/or Fc segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号