首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The budding yeast, Saccharomyces cerevisiae, harbors several prions that are transmitted as altered, heritable protein conformations. [SWI+] is one such prion whose determinant is Swi1, a subunit of the evolutionarily conserved chromatin‐remodeling complex SWI/SNF. Despite the importance of Swi1, the molecular events that lead to [SWI+] prionogenesis remain poorly understood. In this study, we have constructed floccullin‐promoter‐based URA3 reporters for [SWI+] identification. Using these reporters, we show that the spontaneous formation frequency of [SWI+] is significantly higher than that of [PSI+] (prion form of Sup35). We also show that preexisting [PSI+] or [PIN+] (prion form of Rnq1), or overproduction of Swi1 prion‐domain (PrD) can considerably promote Swi1 prionogenesis. Moreover, our data suggest a strain‐specific effect of overproduction of Sse1 – a nucleotide exchange factor of the molecular chaperone Hsp70, and its interaction with another molecular chaperone Hsp104 on [SWI+] maintenance. Additionally, we show that Swi1 aggregates are initially ring/ribbon‐like then become dot‐like in mature [SWI+] cells. In the presence of [PSI+] or [PIN+], Swi1 ring/ribbon‐like aggregates predominantly colocalize with the Sup35 or Rnq1 aggregates; without a preexisting prion, however, such colocalizations are rarely seen during Swi1‐PrD overproduction‐promoted Swi1 prionogenesis. We have thus demonstrated a complex interacting mechanism of yeast prionogenesis.  相似文献   

2.
《朊病毒》2013,7(4):305-310
Prions are infectious, self-propagating protein conformations. [PSI+], [RNQ+] and [URE3] are well characterized prions in Saccharomyces cerevisiae and represent the aggregated states of the translation termination factor Sup35, a functionally unknown protein Rnq1, and a regulator of nitrogen metabolism Ure2, respectively. Overproduction of Sup35 induces the de novo appearance of the [PSI+] prion in [RNQ+] or [URE3] strain, but not in non-prion strain. However, [RNQ+] and [URE3] prions themselves, as well as overexpression of a mutant Rnq1 protein, Rnq1Δ100, and Lsm4, hamper the maintenance of [PSI+]. These findings point to a bipolar activity of [RNQ+], [URE3], Rnq1Δ100, and Lsm4, and probably other yeast prion proteins as well, for the fate of [PSI+] prion. Possible mechanisms underlying the apparent bipolar activity of yeast prions will be discussed.  相似文献   

3.
The formation and maintenance of prions in the yeast Saccharomyces cerevisiae is highly regulated by the cellular chaperone machinery. The most important player in this regulation is Hsp104p, which is required for the maintenance of all known prions. The requirements for other chaperones, such as members of the Hsp40 or Hsp70 families, vary with each individual prion. [RNQ+] cells do not have a phenotype that is amenable to genetic screens to identify cellular factors important in prion propagation. Therefore, we used a chimeric construct that reports the [RNQ+] status of cells to perform a screen for mutants that are unable to maintain [RNQ+]. We found eight separate mutations in Hsp104p that caused [RNQ+] cells to become [rnq]. These mutations also caused the loss of the [PSI+] prion. The expression of one of these mutants, Hsp104p-E190K, showed differential loss of the [RNQ+] and [PSI+] prions in the presence of wild type Hsp104p. Hsp104p-E190K inefficiently propagated [RNQ+] and was unable to maintain [PSI+]. The mutant was unable to act on other in vivo substrates, as strains carrying it were not thermotolerant. Purified recombinant Hsp104p-E190K showed a reduced level of ATP hydrolysis as compared to wild type protein. This is likely the cause of both prion loss and lack of in vivo function. Furthermore, it suggests that [RNQ+] requires less Hsp104p activity to maintain transmissible protein aggregates than Sup35p. Additionally, we show that the L94A mutation in Rnq1p, which reduces its interaction with Sis1p, prevents Rnq1p from maintaining a prion and inducing [PSI+].Key words: [RNQ+], [PSI+], Hsp104p, Sis1p, mutagenesis  相似文献   

4.
5.
Most prions in yeast form amyloid fibrils that must be severed by the protein disaggregase Hsp104 to be propagated and transmitted efficiently to newly formed buds. Only one yeast prion, [PSI+], is cured by Hsp104 overexpression. We investigated the interaction between Hsp104 and Sup35, the priongenic protein in yeast that forms the [PSI+] prion.1 We found that a 20-amino acid segment within the highly-charged, unstructured middle domain of Sup35 contributes to the physical interaction between the middle domain and Hsp104. When this segment was deleted from Sup35, the efficiency of [PSI+] severing was substantially reduced, resulting in larger Sup35 particles and weakening of the [PSI+] phenotype. Furthermore, [PSI+] in these cells was completely resistant to Hsp104 curing. The affinity of Hsp104 was considerably weaker than that of model Hsp104-binding proteins and peptides, implying that Sup35 prions are not ideal substrates for Hsp104-mediated remodeling. In light of this finding, we present a modified model of Hsp104-mediated [PSI+] propagation and curing that requires only partial remodeling of Sup35 assembled into amyloid fibrils.  相似文献   

6.
The [PSI+] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI+], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI+]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI+] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI+] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.  相似文献   

7.
The ability of a yeast cell to propagate [PSI+], the prion form of the Sup35 protein, is dependent on the molecular chaperone Hsp104. Inhibition of Hsp104 function in yeast cells leads to a failure to generate new propagons, the molecular entities necessary for [PSI+] propagation in dividing cells and they get diluted out as cells multiply. Over‐expression of Hsp104 also leads to [PSI+] prion loss and this has been assumed to arise from the complete disaggregation of the Sup35 prion polymers. However, in conditions of Hsp104 over‐expression in [PSI+] cells we find no release of monomers from Sup35 polymers, no monomerization of aggregated Sup35 which is not accounted for by the proportion of prion‐free [psi] cells present, no change in the molecular weight of Sup35‐containing SDS‐resistant polymers and no significant decrease in average propagon numbers in the population as a whole. Furthermore, they show that over‐expression of Hsp104 does not interfere with the incorporation of newly synthesised Sup35 into polymers, nor with the multiplication of propagons following their depletion in numbers while growing in the presence of guanidine hydrochloride. Rather, they present evidence that over‐expression of Hsp104 causes malpartition of [PSI+] propagons between mother and daughter cells in a sub‐population of cells during cell division thereby generating prion‐free [psi?] cells.  相似文献   

8.
Yeast prions, based on self-seeded highly ordered fibrous aggregates (amyloids), serve as a model for human amyloid diseases. Propagation of yeast prions depends on the balance between chaperones of the Hsp100 and Hsp70 families. The yeast prion [PSI+] can be eliminated by an excess of the chaperone Hsp104. This effect is reversed by an excess of the chaperone Hsp70-Ssa. Here we show that the actions of Hsp104 and Ssa on [PSI+] are modulated by the small glutamine-rich tetratricopeptide cochaperone Sgt2. Sgt2 is conserved from yeast to humans, has previously been implicated in the guided entry of tail-anchored proteins (GET) trafficking pathway, and is known to interact with Hsps, cytosolic Get proteins, and tail-anchored proteins. We demonstrate that Sgt2 increases the ability of excess Ssa to counteract [PSI+] curing by excess Hsp104. Deletion of SGT2 also restores trafficking of a tail-anchored protein in cells with a disrupted GET pathway. One region of Sgt2 interacts both with the prion domain of Sup35 and with tail-anchored proteins. Sgt2 levels are increased in response to the presence of a prion when major Hsps are not induced. Our data implicate Sgt2 as an amyloid “sensor” and a regulator of chaperone targeting to different types of aggregation-prone proteins.  相似文献   

9.
The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI+]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI+] and [PIN+] ([RNQ+]) (Genetics, Vol. 197, 685–700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI+] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ+] or [SWI+]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI+] prion stabilizes. Our finding provides strong evidence supporting the “cross-seeding” model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.  相似文献   

10.
The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone action of Hsp31. The delineation of Hsp31's role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.  相似文献   

11.
Yeast prions are heritable protein-based genetic elements which rely on molecular chaperone proteins for stable transmission to cell progeny. Within the past few years, five new prions have been validated and 18 additional putative prions identified in Saccharomyces cerevisiae. The exploration of the physical and biological properties of these “nouveau prions” has begun to reveal the extent of prion diversity in yeast. We recently reported that one such prion, [SWI+], differs from the best studied, archetypal prion [PSI+] in several significant ways.1 Notably, [SWI+] is highly sensitive to alterations in Hsp70 system chaperone activity and is lost upon growth at elevated temperatures. In that report we briefly noted a correlation amongst prions regarding amino acid composition, seed number and sensitivity to the activity of the Hsp70 chaperone system. Here we extend that analysis and put forth the idea that [SWI+] may be representative of a class of asparagine-rich yeast prions which also includes [URE3], [MOT3+] and [ISP+], distinct from the glutamine-rich prions such as [PSI+] and [RNQ+]. While much work remains, it is apparent that our understanding of the extent of the diversity of prion characteristics is in its infancy.Key words: Sis1, Hsp40, chromatin remodeling, Swi1, Ssa, heat-shock, protein misfolding, cell stress, Hsp 104, PINYeast prions are heritable elements, most of which are amyloid aggregates of single proteins. The three best studied yeast prions [PSI+], [RNQ+] (also called [PIN+]), and [URE3] are formed from amyloid aggregates of the cytosolic yeast proteins Sup35, Rnq1 and Ure2, respectively.2 Yeast prions can spontaneously arise in an otherwise clonal cell population, a process referred to as prion formation or nucleation, but once formed their continued propagation is intimately related to molecular chaperone activity. Chaperone function is needed to fragment prion amyloids to create heritable seeds which can then be passed on to cell progeny, thus maintaining the prion in the cell line.3 Yeast prions vary in the steady-state number of heritable seeds per cell; having more seeds increases the chances of passing the prion to progeny and hence prions with higher seed numbers are more mitotically stable.46The currently accepted model of prion fragmentation posits that components of the Hsp70 chaperone system work in congress with the disaggregase Hsp104.1,79 Hsp70-type chaperones function by repeatedly binding and releasing client polypeptides in an ATP-dependent manner, a cycle that is tightly regulated by co-chaperone proteins (Fig. 1). J-proteins (Hsp40s) stimulate Hsp70 ATP hydrolysis and peptide binding via a conserved J-domain whereas nucleotide exchange factors (NEFs) stimulate ADP/ATP exchange, restoring the ATP-bound (peptide unbound) state. In prion fragmentation, the J-protein Sis1, the Hsp70 Ssa, and nucleotide exchange factors (NEFs) of the Sse family are co-chaperones required as partners for the Hsp70 Ssa. While chaperone proteins may have additional functions in prion biology, e.g., prion formation, these additional functions are still poorly understood.9Open in a separate windowFigure 1The Cyclic Hsp70 Chaperone System. Ssa (purple), the yeast cytosolic Hsp70, binds and releases client polypeptides (blue) in a regulated and ATP-dependent manner. J-proteins (aquamarine) including Sis1, Ydj1 and others, stimulate Ssa ATP hydrolysis by virtue of a conserved J-domain and thereby catalyze the “forward” direction of the cycle as indicated above. ADP•Ssa more stably associates with client polypeptides than the ATP-bound form and hence J-proteins favor the ADP•Ssa•Peptide complex. In some cases, J-proteins can also bind and deliver client polypeptides to Hsp70s via C-terminal domains (also shown above). Nucleotide exchange factors (NEFs), including the Sse proteins (dark blue) which share some structural homology with Ssa, catalyze the “reverse” direction of the cycle by facilitating ADP release and subsequent ATP binding, and thus favor an ATP•Ssa state with a dissociated peptide.In the past few years, the number of known yeast prions has rapidly grown such that, to date, a total of eight yeast prions have been identified and an additional 18 proteins have been annotated as putative prions.10 The biological and physical properties of these newly discovered prions are only beginning to be explored. We recently reported the results of an investigation into the biological properties of the prion [SWI+], which is formed from the chromatin-remodeling factor Swi1.1 Swi1 is part of the SWI/SNF chromatin-remodeling complex that regulates the expression of approximately 6% of all yeast genes.11 The presence of [SWI+] causes partial loss of SWI/SNF chromatin-remodeling function, resulting in the impaired ability to uptake certain sugars, among other phenotypes.11 [SWI+] is a prion of particular interest because of its potential to alter global gene expression. Below we describe its intriguing interactions with molecular chaperone proteins and environmental stress, and the implications of these properties on yeast prion biology.  相似文献   

12.
《朊病毒》2013,7(4):141-144
Our laboratory recently reported a novel prion [SWI+], in the budding yeast Saccharomyces cerevisiae. [SWI+] is the prion form of Swi1, a component of the SWI/SNF chromatin-remodeling complex. Cells harboring [SWI+] exhibit a partial loss-of-function phenotype for SWI/SNF, which can be easily assayed by poor growth on some non-fermentable carbon sources such as raffinose. Swi1 is unique among yeast prion proteins for its nuclear localization and the fact that it comprises part of a large, multi-subunit protein complex. The discovery of [SWI+] demonstrates for the first time a link between prion function and chromatin remodeling, implying a possible role for prions in gene regulation. We believe that the unique features of this novel yeast prion will provide new insight into prion biology.  相似文献   

13.
The yeast prion [PSI+] represents an aggregated state of the translational release factor Sup35 (eRF3) and deprives termination complexes of functional Sup35, resulting in nonsense codon suppression. Protein-remodeling factor Hsp104 is involved in thermotolerance and [PSI+] propagation, however the structure-and-function relationship of Hsp104 for [PSI+] remains unclear. In this study, we engineered 58 chromosomal hsp104 mutants that affect residues considered structurally or functionally relevant to Hsp104 remodeling activity, yet most remain to be examined for their significance to [PSI+] in the same genetic background. Many of these hsp104 mutants were affected both in thermotolerance and [PSI+] propagation. However, nine mutants were impaired exclusively for [PSI+], while two mutants were impaired exclusively for thermotolerance. Mutations exclusively affecting [PSI+] are clustered around the lateral channel of the Hsp104 hexamer. These findings suggest that Hsp104 possesses shared as well as distinct remodeling activities for stress-induced protein aggregates and [PSI+] prion aggregates and that the lateral channel plays a role specific to [PSI+] prion propagation.Key Words: Hsp104, reverse genetics, hexamer, nonsense suppression, yeast prion [PSI+], thermotolerance  相似文献   

14.
Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI +] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI +] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ +] prion propagation. In contrast, weak [PSI +] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ +] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI +]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI +]/[RNQ +] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI +] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution.  相似文献   

15.
《朊病毒》2013,7(1):69-77
The yeast prion [PSI+] represents an aggregated state of the translational release factor Sup35 (eRF3) and deprives termination complexes of functional Sup35, resulting in nonsense codon suppression. Protein-remodeling factor Hsp104 is involved in thermotolerance and [PSI+] propagation, however the structure-and-function relationship of Hsp104 for [PSI+] remains unclear. In this study, we engineered 58 chromosomal hsp104 mutants that affect residues considered structurally or functionally relevant to Hsp104 remodeling activity, yet most remain to be examined for their significance to [PSI+] in the same genetic background. Many of these hsp104 mutants were affected both in thermotolerance and [PSI+] propagation. However, nine mutants were impaired exclusively for [PSI+], while two mutants were impaired exclusively for thermotolerance. Mutations exclusively affecting [PSI+] are clustered around the lateral channel of the Hsp104 hexamer. These findings suggest that Hsp104 possesses shared as well as distinct remodeling activities for stress-induced protein aggregates and [PSI+] prion aggregates and that the lateral channel plays a role specific to [PSI+] prion propagation.  相似文献   

16.
Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller “seeds.” Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI+] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI+] aggregates to enlarge. This is incompatible with a previously proposed “capping” model where the overexpressed Q/N-rich protein poisons, or “caps,” the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI+] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI+] aggregates in a way that blocks their shearing.  相似文献   

17.
《朊病毒》2013,7(3):234-239
Most prions in yeast form amyloid fibrils that must be severed by the protein disaggregase Hsp104 to be propagated and transmitted efficiently to newly formed buds. Only one yeast prion, [PSI+], is cured by Hsp104 overexpression. We investigated the interaction between Hsp104 and Sup35, the priongenic protein in yeast that forms the [PSI+] prion.1 Helsen CW, Glover JR. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 2012; 287:542 - 56; http://dx.doi.org/10.1074/jbc.M111.302869; PMID: 22081611 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] We found that a 20-amino acid segment within the highly-charged, unstructured middle domain of Sup35 contributes to the physical interaction between the middle domain and Hsp104. When this segment was deleted from Sup35, the efficiency of [PSI+] severing was substantially reduced, resulting in larger Sup35 particles and weakening of the [PSI+] phenotype. Furthermore, [PSI+] in these cells was completely resistant to Hsp104 curing. The affinity of Hsp104 was considerably weaker than that of model Hsp104-binding proteins and peptides, implying that Sup35 prions are not ideal substrates for Hsp104-mediated remodeling. In light of this finding, we present a modified model of Hsp104-mediated [PSI+] propagation and curing that requires only partial remodeling of Sup35 assembled into amyloid fibrils.  相似文献   

18.
Amyloidogenic proteins, including prions, assemble into multiple forms of structurally distinct fibres. The [PSI+] prion, endogenous to the yeast Saccharomyces cerevisiae, is a dominantly inherited, epigenetic modifier of phenotypes. [PSI+] formation relies on the coexistence of another prion, [RNQ+]. Here, in order to better define the role of amyloid diversity on cellular phenotypes, we investigated how physiological and environmental changes impact the generation and propagation of diverse protein conformations from a single polypeptide. Utilizing the yeast model system, we defined extracellular factors that influence the formation of a spectrum of alternative self‐propagating amyloid structures of the Sup35 protein, called [PSI+] variants. Strikingly, exposure to specific stressful environments dramatically altered the variants of [PSI+] that formed de novo. Additionally, we found that stress also influenced the association between the [PSI+] and [RNQ+] prions in a way that it superceded their typical relationship. Furthermore, changing the growth environment modified both the biochemical properties and [PSI+]‐inducing capabilities of the [RNQ+] template. These data suggest that the cellular environment contributes to both the generation and the selective propagation of specific amyloid structures, providing insight into a key feature that impacts phenotypic diversity in yeast and the cross‐species transmission barriers characteristic of prion diseases.  相似文献   

19.
Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.  相似文献   

20.
It is over 40 years since it was first reported that the yeast Saccahromyces cerevisiae contains two unusual cytoplasmic ‘genetic’ elements: [PSI+] and [URE3]. Remarkably the underlying determinants are protein-based rather than nucleic acid-based, i.e., that they are prions, and we have already learnt much about their inheritance and phenotypic effects from the application of ‘classical’ genetic studies alongside the more modern molecular, cellular and biochemical approaches. Of particular value has been the exploitation of chemical mutagens and ‘antagonistic’ mutants which directly affect the replication and/or transmission of yeast prions. In this Chapter we describe what has emerged from the application of classical and molecular genetic studies, to the most intensively studied of the three native yeast prions, the [PSI+] prion.Key Words: yeast, [PSI], prion, SUP35/eRF3, SUP45/eRF1, antisuppressor, [PSI+] maintenance genes, Hsp104, prion antagonists  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号