首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation of a biotherapeutic is of significant concern and judicious process and formulation development is required to minimize aggregate levels in the final product. Aggregation of a protein in solution is driven by intrinsic and extrinsic factors. In this work we have focused on aggregation as an intrinsic property of the molecule. We have studied the sequences and Fab structures of commercial and non-commercial antibody sequences for their vulnerability towards aggregation by using sequence based computational tools to identify potential aggregation-prone motifs or regions. The mAbs in our dataset contain 2 to 8 aggregation-prone motifs per heavy and light chain pair. Some of these motifs are located in variable domains, primarily in CDRs. Most aggregation-prone motifs are rich in β branched aliphatic and aromatic residues. Hydroxyl-containing Ser/Thr residues are also found in several aggregation-prone motifs while charged residues are rare. The motifs found in light chain CDR3 are glutamine (Q)/asparagine (N) rich. These motifs are similar to the reported aggregation promoting regions found in prion and amyloidogenic proteins that are also rich in Q/N, aliphatic and aromatic residues. The implication is that one possible mechanism for aggregation of mAbs may be through formation of cross-β structures and fibrils. Mapping on the available Fab—receptor/antigen complex structures reveals that these motifs in CDRs might also contribute significantly towards receptor/antigen binding. Our analysis identifies the opportunity and tools for simultaneous optimization of the therapeutic protein sequence for potency and specificity while reducing vulnerability towards aggregation.Key words: monoclonal antibody, aggregation, antibody sequence, aggregation-prone region, aggregation prediction  相似文献   

2.
Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation.  相似文献   

3.
The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.  相似文献   

4.
Human urokinase-type plasminogen activator receptor (uPAR/CD87) is expressed at the invasive interface of the tumor-stromal microenvironment in many human cancers and interacts with a wide array of extracellular molecules. An anti-uPAR antibody (ATN615) was prepared using hybridoma technology. This antibody binds to uPAR in vitro with high affinity (K(d) approximately 1 nM) and does not interfere with uPA binding to uPAR. Here we report the crystal structure of the Fab fragment of ATN615 at 1.77 A and the analysis of ATN615-suPAR-ATF structure that was previously determined, emphasizing the ATN615-suPAR interaction. The complementarity determining regions (CDRs) of ATN615 consist of a high percentage of aromatic residues, and form a relatively flat and undulating surface. The ATN615 Fab fragment recognizes domain 3 of suPAR. The antibody-antigen recognition involves 11 suPAR residues and 12 Fab residues from five CDRs. Structural data suggest that Pro188, Asn190, Gly191, and Arg192 residues of uPAR are the key residues for the antibody recognition, while Pro189 and Arg192 render specificity of ATN615 for human uPAR. Interestingly, this antibody-antigen interface has a small contact area, mainly polar interaction with little hydrophobic character, yet has high binding strength. Furthermore, several solvent molecules (assigned as polyethylene glycols) were clearly visible in the binding interface between antibody and antigen, suggesting that solvent molecules may be important for the maximal binding between suPAR and ATN615 Fab. ATN615 undergoes small but noticeable changes in its CDR region upon antigen binding.  相似文献   

5.
《MABS-AUSTIN》2013,5(8):1281-1290
ABSTRACT

Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug’s potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs’ sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.  相似文献   

6.
This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.  相似文献   

7.
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR.  相似文献   

8.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

9.
The crystal structure of the complex between neuraminidase from influenza virus (subtype N9 and isolated from an avian source) and the antigen-binding fragment (Fab) of monoclonal antibody NC41 has been refined by both least-squares and simulated annealing methods to an R-factor of 0.191 using 31,846 diffraction data in the resolution range 8.0 to 2.5 A. The resulting model has a root-mean-square deviation from ideal bond-length of 0.016 A. One fourth of the tetrameric complex comprises the crystallographic model, which has 6577 non-hydrogen atoms and consists of 389 protein residues and eight carbohydrate residues in the neuraminidase, 214 residues in the Fab light chain, and 221 residues in the heavy chain. One putative Ca ion buried in the neuraminidase, and 73 water molecules, are also included. A remarkable shape complementarity exists between the interacting surfaces of the antigen and the antibody, although the packing density of atoms at the interface is somewhat looser than in the interior of a protein. Similarly, there is a high degree of chemical complementarity between the antigen and antibody, mediated by one buried salt-link, two solvated salt-links and 12 hydrogen bonds. The antibody-binding site on neuraminidase is discontinuous and comprises five chain segments and 19 residues in contact, whilst 33 neuraminidase residues in eight segments have 899 A2 of surface area buried by the interaction (to a 1.7 A probe), including two hexose units. Seventeen residues in NC41 Fab lying in five of the six complementarity determining regions (CDRs) make contact with the neuraminidase and 36 antibody residues in seven segments have 916 A2 of buried surface area. The interface is more extensive than those of the three lysozyme-Fab complexes whose crystal structures have been determined, as judged by buried surface area and numbers of contact residues. There are only small differences (less than 1.5 A) between the complexed and uncomplexed neuraminidase structures and, at this resolution and accuracy, those differences are not unequivocal. The main-chain conformations of five of the CDRs follow the predicted canonical structures. The interface between the variable domains of the light and heavy chains is not as extensive as in other Fabs, due to less CDR-CDR interaction in NC41. The first CDR on the NC41 Fab light chain is positioned so that it could sterically hinder the approach of small as well as large substrates to the neuraminidase active-site pocket, suggesting a possible mechanism for the observed inhibition of enzyme activity by the antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Aggregation is mediated by local unfolding to allow aggregation “hot spot(s)” to become solvent exposed and available to associate with a hot spot on another partially unfolded protein. Historically, the unfolding of either the crystallizable fragment (Fc) or the antigen binding fragment (Fab) regions of a given monoclonal antibody (MAb) has been implicated in aggregation, with differing results across different proteins. The present work focuses on separately quantifying the aggregation kinetics of isolated Fc, isolated Fab, and intact MAb as a function of pH under accelerated (high temperature) conditions. The results show that both Fab and Fc are aggregation prone and compete within the same MAb.  相似文献   

11.
Therapeutic monoclonal antibodies (mAbs) are biologics produced using mammalian cells and represent an important class of biotherapeutics. Aggregation in mAbs is a major challenge that can be mitigated by rigorous and reproducible upstream and downstream approaches. The impact of frequently used surfactants, like polysorbate 20, polysorbate 80, poloxamer 188, and 2-hydroxypropyl-beta-cyclodextrin, on aggregation of mAbs during cell culture was investigated in this study. Their impact on cell proliferation, viability, and mAb titer was also investigated. Polysorbate 20 and polysorbate 80 at the concentration of 0.01 g/L and poloxamer 188 at the concentration of 5 g/L were found to be effective in reducing aggregate formation in cell culture medium, without affecting the cell growth or viability. Furthermore, their presence in culture media resulted in increased cell proliferation as compared to the control group. Addition of these surfactants at the specified concentrations increased monomer production while decreasing high molecular weight species in the medium. After mAbs were separated, using protein “A” chromatography, flasks with surfactant exhibited improved antibody stability, when analyzed by DLS. Thus, while producing aggregation-prone mAbs via mammalian cell culture, these excipients may be employed as cell culture medium supplements to enhance the quality and yield of functional mAbs.  相似文献   

12.
Aggregation and self-association in protein-based biotherapeutics are critical quality attributes that are tightly controlled by the manufacturing process. Aggregates have the potential to elicit immune reactions, including neutralizing anti-drug antibodies, which can diminish the drug's efficacy upon subsequent dosing. The structural basis of reversible self-association, a form of non-covalent aggregation in the native state, is only beginning to emerge for many biologics and is often unique to a given molecule. In the present study, crystal structures of the infliximab (Remicade) Fc and Fab domains were determined. The Fab domain structures are the first to be reported in the absence of the antigen (i.e., tumor necrosis factor), and are consistent with a mostly rigid complementarity-determining region loop structure and rotational flexibility between variable and constant regions. A potential self-association interface is conserved in two distinct crystal forms of the Fab domain, and solution studies further demonstrate that reversible self-association of infliximab is mediated by the Fab domain. The crystal structures and corresponding solution studies help rationalize the propensity for infliximab to self-associate and provide insights for the design of improved control strategies in biotherapeutics development.  相似文献   

13.
Exact identification of complementarity determining regions (CDRs) is crucial for understanding and manipulating antigenic interactions. One way to do this is by marking residues on the antibody that interact with B cell epitopes on the antigen. This, of course, requires identification of B cell epitopes, which could be done by marking residues on the antigen that bind to CDRs, thus requiring identification of CDRs. To circumvent this vicious circle, existing tools for identifying CDRs are based on sequence analysis or general biophysical principles. Often, these tools, which are based on partial data, fail to agree on the boundaries of the CDRs. Herein we present an automated procedure for identifying CDRs and B cell epitopes using consensus structural regions that interact with the antigens in all known antibody-protein complexes. Consequently, we provide the first comprehensive analysis of all CDR-epitope complexes of known three-dimensional structure. The CDRs we identify only partially overlap with the regions suggested by existing methods. We found that the general physicochemical properties of both CDRs and B cell epitopes are rather peculiar. In particular, only four amino acids account for most of the sequence of CDRs, and several types of amino acids almost never appear in them. The secondary structure content and the conservation of B cell epitopes are found to be different than previously thought. These characteristics of CDRs and epitopes may be instrumental in choosing which residues to mutate in experimental search for epitopes. They may also assist in computational design of antibodies and in predicting B cell epitopes.  相似文献   

14.
Optimal protein function often depends on co-operative interactions between amino acid residues distant in the protein primary sequence yet spatially near one another following protein folding. For example, antibody affinity is influenced by interactions of framework residues with complementarity-determining region (CDR) residues. However, despite the abundance of antibody structural information and computational tools the humanization of rodent antibodies for clinical use often results in a significant loss of affinity. To date, antibody engineering efforts have focused either on optimizing CDR residues involved in antigen binding or on optimizing antibody framework residues that serve critical roles in preserving the conformation of CDRs. In the present study a new approach which permits the rapid identification of co-operatively interacting framework and CDR residues was used to simultaneously humanize and optimize a murine antibody directed against CD40. Specifically, a combinatorial library that examined eight potentially important framework positions concomitantly with focused CDR libraries consisting of variants containing random single amino acid mutations in the third CDR of the heavy and light chains was expressed. Multiple anti-CD40 Fab variants containing as few as one murine framework residue and displaying up to approximately 500-fold higher affinity than the initial chimeric Fab were identified. The higher affinity humanized variants demonstrated a co-operative interaction between light chain framework residue Y49 and heavy chain CDR3 residue R/K101 (coupling energy, DeltaGI=0.9 kcal/mol). Screening of combinatorial framework-CDR libraries permits identification of monoclonal antibodies (mAb) with structures optimized for function, including instances in which the antigen induces conformational changes in the mAb. Moreover, the enhanced humanized variants contain fewer murine framework residues and could not be identified by sequential in vitro humanization and affinity muturation strategies. This approach to identifying co-operatively interacting residues is not restricted to antibody-antigen interactions and consequently, may be used broadly to gain insight into protein structure-function relationships, including proteins that serve as catalysts.  相似文献   

15.
Many pathogens present highly variable surface proteins to their host as a means of evading immune responses. The structure of a peptide antigen corresponding to the subtype P1.7 variant of the porin PorA from the human pathogen Neisseria meningitidis was determined by solution of the X-ray crystal structure of the ternary complex of the peptide (ANGGASGQVK) in complex with a Fab fragment and a domain from streptococcal protein G to 1.95 A resolution. The peptide adopted a beta-hairpin structure with a type I beta-turn between residues Gly4P and Gly7P, the conformation of the peptide being further stabilised by a pair of hydrogen bonds from the side-chain of Asn2P to main-chain atoms in Val9P. The antigen binding site within the Fab formed a distinct crevice lined by a high proportion of apolar amino acids. Recognition was supplemented by hydrogen bonds from heavy chain residues Thr50H, Asp95H, Leu97H and Tyr100H to main-chain and side-chain atoms in the peptide. Complementarity-determining region (CDR) 3 of the heavy chain was responsible for approximately 50 % of the buried surface area formed by peptide-Fab binding, with the remainder made up from CDRs 1 and 3 of the light chain and CDRs 1 and 2 of the heavy chain. Knowledge of the structures of variable surface antigens such as PorA is an essential prerequisite to a molecular understanding of antigenic variation and its implications for vaccine design.  相似文献   

16.
Li Y  Li H  Smith-Gill SJ  Mariuzza RA 《Biochemistry》2000,39(21):6296-6309
Antigen-antibody complexes provide useful models for studying the structure and energetics of protein-protein interactions. We report the cloning, bacterial expression, and crystallization of the antigen-binding fragment (Fab) of the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 in both free and antigen-bound forms. The three-dimensional structure of Fab HyHEL-63 complexed with HEL was determined to 2.0 A resolution, while the structure of the unbound antibody was determined in two crystal forms, to 1.8 and 2.1 A resolution. In the complex, 19 HyHEL-63 residues from all six complementarity-determining regions (CDRs) of the antibody contact 21 HEL residues from three discontinuous polypeptide segments of the antigen. The interface also includes 11 bound water molecules, 3 of which are completely buried in the complex. Comparison of the structures of free and bound Fab HyHEL-63 reveals that several of the ordered water molecules in the free antibody-combining site are retained and that additional waters are added upon complex formation. The interface waters serve to increase shape and chemical complementarity by filling cavities between the interacting surfaces and by contributing to the hydrogen bonding network linking the antigen and antibody. Complementarity is further enhanced by small (<3 A) movements in the polypeptide backbones of certain antibody CDR loops, by rearrangements of side chains in the interface, and by a slight shift in the relative orientation of the V(L) and V(H) domains. The combining site residues of complexed Fab HyHEL-63 exhibit reduced temperature factors compared with those of the free Fab, suggesting a loss in conformational entropy upon binding. To probe the relative contribution of individual antigen residues to complex stabilization, single alanine substitutions were introduced in the epitope of HEL recognized by HyHEL-63, and their effects on antibody affinity were measured using surface plasmon resonance. In agreement with the crystal structure, HEL residues at the center of the interface that are buried in the complex contribute most to the binding energetics (DeltaG(mutant) - DeltaG(wild type) > 3.0 kcal/mol), whereas the apparent contributions of solvent-accessible residues at the periphery are much less pronounced (<1.5 kcal/mol). In the latter case, the mutations may be partially compensated by local rearrangements in solvent structure that help preserve shape complementarity and the interface hydrogen bonding network.  相似文献   

17.

Background

Many antibody crystal structures have been solved. Structural modeling programs have been developed that utilize this information to predict 3-D structures of an antibody based upon its sequence. Because of the problem of self-reference, the accuracy and utility of these predictions can only be tested when a new structure has not yet been deposited in the Protein Data Bank.

Methods

We have solved the crystal structure of the Fab fragment of RAC18, a protective anti-ricin mAb, to 1.9 Å resolution. We have also modeled the Fv structure of RAC18 using publicly available Ab modeling tools Prediction of Immunoglobulin Structures (PIGS), RosettaAntibody, and Web Antibody Modeling (WAM). The model structures underwent energy minimization. We compared results to the crystal structure on the basis of root-mean-square deviation (RMSD), template modeling score (TM-score), Z-score, and MolProbity analysis.

Findings

The crystal structure showed a pocket formed mainly by AA residues in each of the heavy chain complementarity determining regions (CDRs). There were differences between the crystal structure and structures predicted by the modeling tools, particularly in the CDRs. There were also differences among the predicted models, although the differences were small and within experimental error. No one modeling program was clearly superior to the others. In some cases, choosing structures based only on sequence homology to the crystallized Ab yielded RMSDs comparable to the models.

Conclusions

Molecular modeling programs accurately predict the structure of most regions of antibody variable domains of RAC18. The hypervariable CDRs proved most difficult to model, particularly H chain CDR3. Because CDR3 is most often involved in contact with antigen, this defect must be considered when using models to identify potential contacts between antibody and antigen. Because this study represents only a single case, the results cannot be generalized. Rather they highlight the utility and limitations of modeling programs.  相似文献   

18.
The Complementarity Determining Regions (CDRs) of antibodies are assumed to account for the antigen recognition and binding and thus to contain also the antigen binding site. CDRs are typically discerned by searching for regions that are most different, in sequence or in structure, between different antibodies. Here, we show that ~20% of the antibody residues that actually bind the antigen fall outside the CDRs. However, virtually all antigen binding residues lie in regions of structural consensus across antibodies. Furthermore, we show that these regions of structural consensus which cover the antigen binding site are identifiable from the sequence of the antibody. Analyzing the predicted contribution of antigen binding residues to the stability of the antibody-antigen complex, we show that residues that fall outside of the traditionally defined CDRs are at least as important to antigen binding as residues within the CDRs, and in some cases, they are even more important energetically. Furthermore, antigen binding residues that fall outside of the structural consensus regions but within traditionally defined CDRs show a marginal energetic contribution to antigen binding. These findings allow for systematic and comprehensive identification of antigen binding sites, which can improve the understanding of antigenic interactions and may be useful in antibody engineering and B-cell epitope identification.  相似文献   

19.
Aggregation of conformation-abnormal peptides probably plays a key role in the pathogenesis of many neurodegenerative diseases. DSCR1 Down syndrome (DS) critical region 1, was identified from a chromosomal region (21q22.1-q22.2) for the clinical manifestations of DS when an extra-copy is present. We report that expression of DSCR1 in several cell types, including primary neurons, causes microtubule-dependent aggresome-like inclusion body formation. Disease-associated huntingtin (Q148) and ataxin-3 (Q84) co-localize with DSCR1 aggregates. Neurons bearing DSCR1 aggregates show reduced synaptophysin staining in processes. DSCR1 residues 31-90 constitute an aggregation-prone domain that is predicted to form a hydrophobic patch on the protein surface when residues 1-30 are removed. This study identifies a novel function of DSCR1 that may underlie DS neuropathology.  相似文献   

20.
Paula S  Monson N  Ball WJ 《Proteins》2005,60(3):382-391
The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, gamma-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号