首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylation is an important post-translational modification during protein production in eukaryotic cells, and it is essential for protein structure, stability, half-life, and biological functions. In this study, we produced various monoclonal antibody (mAb) glycoforms from Chinese hamster ovary (CHO) cells, including the natively glycosylated antibody, the enriched G0 form, the deglycosylated form, the afucosylated form, and the high mannose form, and we compared their intrinsic properties, side-by-side, through biophysical and biochemical approaches. Spectroscopic analysis indicates no measureable secondary or tertiary structural changes after in vitro or in vivo modification of the glycosylation pattern. Thermal unfolding experiments show that the high mannose and deglycosylated forms have reduced thermal stability of the CH2 domain compared with the other tested glycoforms. We also observed that the individual domain’s thermal stability could be pH dependent. Proteolysis analysis indicates that glycosylation plays an important role in stabilizing mAbs against proteases. The stability of antibody glycoforms at the storage condition (2–8 °C) and at accelerated conditions (30 and 40 °C) was evaluated, and the results indicate that glycosylation patterns do not substantially affect the storage stability of the antibody we studied.  相似文献   

2.
《MABS-AUSTIN》2013,5(6):568-576
Antibody glycosylation is a common post-translational modification and has a critical role in antibody effector function. The use of glycoengineering to produce antibodies with specific glycoforms may be required to achieve the desired therapeutic efficacy. However, the modified molecule could have unusual behavior during development due to the alteration of its intrinsic properties and stability. In this study, we focused on the differences between glycosylated and deglycosylated antibodies, as aglycosyl antibodies are often chosen when effector function is not desired or unimportant. We selected three human IgG1 antibodies and used PNGase F to remove their oligosaccharide chains. Although there were no detected secondary or tertiary structural changes after deglycosylation, other intrinsic properties of the antibody were altered with the removal of oligosaccharide chains in the Fc region. The apparent molecular hydrodynamic radius increased after deglycosylation based on size-exclusion chromatography analysis. Deglycosylated antibodies exhibited less thermal stability for the CH2 domain and less resistance to GdnHCl induced unfolding. Susceptibility to proteolytic cleavage demonstrated that the deglycosylated version was more susceptible to papain. An accelerated stability study revealed that deglycosylated antibodies had higher aggregation rates. These changes may impact the development of aglycosyl antibody biotherapeutics.  相似文献   

3.
Antibody glycosylation is a common post-translational modification and has a critical role in antibody effector function. The use of glycoengineering to produce antibodies with specific glycoforms may be required to achieve the desired therapeutic efficacy. However, the modified molecule could have unusual behavior during development due to the alteration of its intrinsic properties and stability. In this study, we focused on the differences between glycosylated and deglycosylated antibodies, as aglycosyl antibodies are often chosen when effector function is not desired or unimportant. We selected three human IgG1 antibodies and used PNGase F to remove their oligosaccharide chains. Although there were no detected secondary or tertiary structural changes after deglycosylation, other intrinsic properties of the antibody were altered with the removal of oligosaccharide chains in the Fc region. The apparent molecular hydrodynamic radius increased after deglycosylation based on size-exclusion chromatography analysis. Deglycosylated antibodies exhibited less thermal stability for the CH2 domain and less resistance to GdnHCl induced unfolding. Susceptibility to proteolytic cleavage demonstrated that the deglycosylated version was more susceptible to papain. An accelerated stability study revealed that deglycosylated antibodies had higher aggregation rates. These changes may impact the development of aglycosyl antibody biotherapeutics.Key words: monoclonal antibody, glycosylation, stability, liquid chromatography-mass spectroscopy, Fourier transform infrared, fluorescence spectroscopy, size-exclusion chromatography, differential scanning calorimetry  相似文献   

4.
The gelatin (denatured collagen) binding domain of the extracellular matrix protein fibronectin contains three potential N-glycosylation sites. Complete deglycosylation of this domain is known to reduce the thermal stability of the eighth type 1 (8F1) module. We have conducted a site-specific analysis of the structural and functional consequences of N-linked glycosylation in the 8F19F1 module pair. Three glycoforms have been identified by mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical shift differences between the glycoforms have revealed an intimate interaction between one N-linked sugar and the polypeptide that is critical for gelatin binding, as shown by affinity chromatography.  相似文献   

5.
Previous studies on the effect of glycosylation on the elimination rate of antibodies have produced conflicting results. Here, we performed pharmacokinetic studies in mice with two preparations of a monoclonal IgG1 antibody enriched for complex type or high mannose type oligosaccharides at the Fc glycosylation site. No significant difference in the serum half-life was found between the two antibody glycoforms, nor was any difference observed in the serum half-lives of different complex type glycoforms. To evaluate the influence of glycosylation within the variable domain, a second monoclonal antibody, glycosylated in both the Fc and Fv domains, was separated into fractions containing different amounts of Fv-associated sialic acid and administered to mice. Again, no significant difference was found in the clearance rates of variants carrying different amounts of Fv-associated sialic acid or lacking Fv-glycosylation. These results suggest that glycosylation has little or no impact on the pharmacokinetic behavior of these two monoclonal antibodies in mice.  相似文献   

6.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

7.
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.  相似文献   

8.
The glycosylation and immunoreactivity of an estrogen regulated glycoprotein secreted by breast cancer cells in culture and defined by its molecular mass (52 000-Mr protein) have been studied indirectly using an inhibitor of glycosylation and specific endoglycosidases. The protein and its deglycosylated forms were immunoprecipitated with specific monoclonal antibodies to the 52 000-Mr protein and analyzed by SDS polyacrylamide gel electrophoresis. The 52 000-Mr protein was intensely labelled by [3H] mannose or [35S] methionine. Tunicamycin treatment of the cells, endoglycosidase H or endoglycosidase F digestion of conditioned media, gave two identical deglycosylated forms of 50 000-Mr and 48 000-Mr which remained immunoreactive. The 48 000-Mr protein, in contrast to the 52 000 and 50 000-Mr proteins, was unable to bind concanavalin A. The 52 000-Mr protein was resolved into five spots of decreasing pI on two-dimensional gels following immunoprecipitation. Endoglycosidase H treatment decreased the molecular weight and reduced the intensity of spots of lower pI, suggesting that the N-glycosylated chains contain acidic molecules. We conclude that: The 52 000-Mr secreted protein contains at least two high mannose or hybrid N-glycosylated chains of approximately 2,000 molecular weight corresponding to 8% of the mass of the 52 000-Mr protein. The two types of monoclonal antibodies (site 1 and 2) raised against the 52 000-Mr glycoprotein are still able to recognize the 48 000-Mr N-deglycosylated form indicating that they do not interact with the N-glycosylated moiety of the molecule.  相似文献   

9.
LOX-1 (lectin-like oxidized low density lipoprotein receptor-1) is a type II membrane protein belonging to the C-type lectin family that can act as a cell-surface receptor for atherogenic oxidized low density lipoprotein (Ox-LDL) and may play crucial roles in atherogenesis. In this study, we show, by pulse-chase labeling and glycosidase digestion, that LOX-1 is synthesized as a 40-kDa precursor protein with N-linked high mannose carbohydrate chains (pre-LOX-1), which is subsequently further glycosylated and processed into the 48-kDa mature form within 40 min. Furthermore, when treated with an N-glycosylation inhibitor, tunicamycin, both tumor necrosis factor-alpha-activated bovine aortic endothelial cells and CHO-K1 cells stably expressing bovine LOX-1 (BLOX-1-CHO) exclusively produced a 32-kDa deglycosylated form of LOX-1. Cell enzyme-linked immunosorbent assay, flow cytometry, and immunofluorescence confocal microscopy demonstrated that the deglycosylated form of LOX-1 is not efficiently transported to the cell surface, but is retained in the endoplasmic reticulum or Golgi apparatus in tumor necrosis factor-alpha-activated bovine aortic endothelial cells, but not in BLOX-1-CHO cells. Radiolabeled Ox-LDL binding studies revealed that the deglycosylated form of LOX-1 expressed on the cell surface of BLOX-1-CHO cells has a reduced affinity for Ox-LDL binding. Taken together, N-linked glycosylation appears to play key roles in the cell-surface expression and ligand binding of LOX-1.  相似文献   

10.
With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2–8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2–8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.  相似文献   

11.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   

12.
The main objective of this study was to characterize the N-linked glycosylation profiles of recombinant hemagglutinin (HA) proteins expressed in either insect or plant hosts, and to develop a mass spectrometry based workflow that can be used in quality control to assess batch-to-batch reproducibility for recombinant HA glycosylation. HA is a surface glycoprotein of the influenza virus that plays a key role in viral infectivity and pathogenesis. Characterization of the glycans for plant recombinant HA from the viral strain A/California/04/09 (H1N1) has not yet been reported. In this study, N-linked glycosylation patterns of the recombinant HAs from both insect and plant hosts were characterized by precursor ion scan-driven data-dependent analysis followed by high-resolution MS/MS analysis of the deglycosylated tryptic peptides. Five glycosylation sites (N11, N23, N276, N287, and N481) were identified containing high mannose type glycans in plant-expressed HAs, and complex type glycoforms for the insect-expressed HA. More than 95% site occupancy was observed for all glycosylation sites except N11, which was 60% occupied. Multiple-reaction monitoring based quantitation analysis was developed for each glycopeptide isoform and the quantitative results indicate that the Man(8) GlcNAc(2) is the dominant glycan for all sites in plant-expressed HAs. The relative abundance of the glycoforms at each specific glycosylation site and the relative quantitation for each glycoform among three HAs were determined. Few differences in the glycosylation profiles were detected between the two batches of plant HAs studied, but there were significant differences between the glycosylation patterns in the HAs generated in plant and insect expression hosts.  相似文献   

13.
Here a mass spectrometry-based platform for the analysis of glycoproteins is presented. Glycopeptides and released glycans are analyzed, the former by quadrupole orthogonal time-of-flight liquid chromatography/mass spectrometry (QoTOF LC/MS) and the latter by permethylation analysis using matrix-assisted laser desorption/ionization (MALDI)–TOF MS. QoTOF LC/MS analysis reveals the stochastic distribution of glycoforms at occupied sequons, and the latter provides a semiquantitative assessment of overall protein glycosylation. Hydrophilic interaction chromatography (HILIC) was used for unbiased enrichment of glycopeptides and was validated using five model N-glycoproteins bearing a wide array of glycans, including high-mannose, complex, and hybrid subtypes such as sulfo and sialyl forms. Sialyl and especially sulfated glycans are difficult to analyze because these substitutions are labile. The conditions used here allow detection of these compounds quantitatively, intact, and in the context of overall glycosylation. As a test case, we analyzed influenza B/Malaysia/2506/2004 hemagglutinin, a component of the 2006–2007 influenza vaccine. It bears 11 glycosylation sites. Approximately 90% of its glycans are high mannose, and 10% are present as complex and hybrid types, including those with sulfate. The stochastic distribution of glycoforms at glycosylation sites is revealed. This platform should have wide applications to glycoproteins in basic sciences and industry because no apparent bias for any glycoforms is observed.  相似文献   

14.
Nonspecific cross-reacting antigen (NCA) is a highly glycosylated membrane protein which is immunologically and structurally related to carcinoembryonic antigen, an important tumor-associated antigen. Two glycoforms of NCA were purified from a single liver metastasis of a colonic carcinoma and characterized with respect to their primary sequence and position of glycosylation sites. The two glycoforms (designated TEX (tumor-extracted antigen), Mr 75,000, and NCA, Mr 45,000) each showed a deglycosylated Mr of 35,000 and yielded identical peptide maps. The structural characterization of TEX and NCA and the assignment of glycosylation sites was performed by fast atom bombardment mass spectrometry and microsequence analysis of the resulting peptides. This approach showed that TEX and NCA were identical with respect to primary sequence and provided direct evidence that 11 of the 12 predicted asparagine-linked glycosylation sites were glycosylated in both TEX and NCA. Indirect evidence was obtained for glycosylation at the other site. Both glycoforms also contain ethanolamine linked to Gly-286, a finding consistent with the conclusion that these proteins are anchored to the plasma membrane through a glycosyl-phosphatidylinositol tail. The large difference in the molecular weights of glycosylated TEX and NCA suggests significant variations in their oligosaccharide structures.  相似文献   

15.
Abstract The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.  相似文献   

16.
Fc gamma RIII is a family of protein isoforms encoded by at least two distinct, yet highly homologous, genes. Fc gamma RIII on neutrophils is a glycosylphosphatidylinositol-linked protein with an allelic polymorphism (NA1/NA2) while Fc gamma RIII on NK cells (Fc gamma RIIINK) is an exclusively transmembrane protein without the NA polymorphism. The relationship of the isoform of Fc gamma RIII expressed on cultured monocytes (Fc gamma RIIIM phi) to these two forms, however, is unclear because some evidence suggests lowered expression of Fc gamma RIIIM phi in paroxysmal nocturnal hemoglobinuria (unlike Fc gamma RIIINK) and a unique deglycosylated m.w. for Fc gamma RIIIM phi. In this study we demonstrate that, as with Fc gamma RIIINK, Fc gamma RIIIM phi is resistant to the action of phosphatidylinositol-specific phospholipase C and is expressed at normal levels on affected (glycosylphosphatidylinositol-anchor negative) cultured monocytes from patients with paroxysmal nocturnal hemoglobinuria. Fc gamma RIIIM phi is also shed from the cell surface upon incubation at 37 degrees C. However, Fc gamma RIIIM phi and Fc gamma RIIINK have different m.w. as glycosylated proteins despite the same deglycosylated m.w. Thus, each cell type appears to express distinct glycoforms. These differences in glycosylation may influence the functional properties of the receptor.  相似文献   

17.
The sweet protein brazzein, a member of the Csβα fold family, contains four disulfide bonds that lend a high degree of thermal and pH stability to its structure. Nevertheless, a variable temperature study has revealed that the protein undergoes a local, reversible conformational change between 37 and 3°C with a midpoint about 27°C that changes the orientations and side‐chain hydrogen bond partners of Tyr8 and Tyr11. To test the functional significance of this effect, we used NMR saturation transfer to investigate the interaction between brazzein and the amino terminal domain of the sweet receptor subunit T1R2; the results showed a stronger interaction at 7°C than at 37°C. Thus the low temperature conformation, which alters the orientations of two loops known to be critical for the sweetness of brazzein, may represent the bound state of brazzein in the complex with the human sweet receptor. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

18.
A new hydrophilic interaction chromatography (HILIC) column packed with amide 1.7 μm sorbent was applied to the characterization of glycoprotein digests. Due to the impact of the hydrophilic carbohydrate moiety, glycopeptides were more strongly retained on the column and separated from the remaining nonglycosylated peptides present in the digest. The glycoforms of the same parent peptide were also chromatographically resolved and analyzed using ultraviolet and mass spectrometry detectors. The HILIC method was applied to glyco-profiling of a therapeutic monoclonal antibody and proteins with several N-linked and O-linked glycosylation sites. For characterization of complex proteins with multiple glycosylation sites we utilized 2D LC, where RP separation dimension was used for isolation of glycopeptides and HILIC for resolution of peptide glycoforms. The analysis of site-specific glycan microheterogeneity was illustrated for the CD44 fusion protein.  相似文献   

19.
The objective of this study was to determine the effects of proline hydroxylation in the collagen-like domain and Asn(187)-linked glycosylation in the globular domain on the molecular and functional properties of human surfactant protein A1 (SP-A1). To address this issue, SP-A1 was in vitro expressed in insect and mammalian cells. Insect cells lack prolyl 4-hydroxylase activity. A glycosylation-deficient mutant SP-A1 was expressed in insect cells. In this report we present evidence that hydroxylation increased the T(m) of the collagen-like domain by 9 degrees C. Proline hydroxylation affected both the arrangement of disulfide bonding and the extent of oligomerization but did not affect conformational changes in the globular domain identified by intrinsic fluorescence. Both self-association and lipid-related functions of SP-A were clearly correlated with the thermal stability of the collagen domain and the degree of oligomerization. Structural properties and lipid-related characteristics of SP-A1 expressed in mammalian cells but not in insect cells were close to that of natural human SP-A. On the other hand, the lack of glycosylation did not affect either collagen domain stability or conformational changes induced by calcium in the globular domain. However, the lack of glycosylation favored nonspecific thermally induced aggregation of the protein.  相似文献   

20.
N-linked glycans with complex structure have a major role in the biological activity of a wide variety of cell surface and secreted glycoproteins. Here, we show that geldanamycin, an inhibitor of Hsp90, interferes with the formation of complex glycosylated mammalian prion protein (PrPC). Similarly to inhibitors of α-mannosidases, geldanamycin stabilized a high mannose PrPC glycoform and prevented the subsequent processing into complex structures. Moreover, a PrP/Grp94 complex could be isolated from geldanamycin-treated cells, suggesting that Grp94 might play a role in the processing of PrPC in the endoplasmic reticulum. Inhibition of complex glycosylation did not interfere with the glycosylphosphatidylinositol (GPI) anchor attachment and cellular trafficking of high mannose PrPC to the outer leaflet of the plasma membrane. In scrapie-infected neuroblastoma cells, however, high mannose PrPC glycoforms were preferred substrates for the formation of PrP-scrapie (PrPSc). Our study reveals that complex glycosylation is dispensable for the cellular trafficking of PrPC, but modulates the formation of PrPSc .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号