首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Endocrine practice》2015,21(12):1387-1394
Objective: To provide clinicians with an overview of similar biologic products including biosimilars and new insulin versions available in the U.S. and of key issues associated with such products, including differences in manufacturing and regulatory approaches and their impact on clinical use.Methods: We reviewed the relevant clinical and regulatory literature.Results: Patent protections for many biologics including several insulin preparations have or will expire shortly. This opens the door for new insulin versions to enter the U.S. and global marketplace. The development, manufacturing, and approval process for similar biologic products is more complex than for generic versions of small molecules. Most similar biologic products in the U.S. will be submitted for approval under section 351(k), a newly created biosimilar regulatory pathway. However, some biologics, including new insulin versions, will be submitted via the existing 505(b) regulatory pathway. These regulatory pathways have implications for how such products may be labeled, how they may be dispensed, and how patients may perceive them. The immunogenicity of biologics can affect safety and efficacy and can be altered through subtle changes in manufacturing. With the arrival of new insulin versions, health care providers will need to understand the implications of interchangeability, therapeutic equivalence, substitution, switching, and new delivery devices.Conclusion: An understanding of the above topics will be important as physicians, payers, and patients choose between similar versions of a reference listed biologic product.Abbreviations:BLA = biologics license applicationBPCIA = Biologics Price Competition and Innovation ActEU = European UnionFDA = Food and Drug AdministrationINN = international nonproprietary nameNDA = new drug applicationPD = pharmacodynamicPK = pharmacokineticPRCA = pure red cell aplasia  相似文献   

2.
Development of biosimilar proteins is the fastest growing sector in the biopharmaceutical industry, as patents for the top 10 best-selling biologics will expire within one decade. The world’s first biosimilar of infliximab, Remsima® (CT-P13) made by Celltrion, was approved by the Committee for Medicinal Products for Human Use (CHMP) of European Medicine Agency (EMA) in June 2013. This has ignited competition between related companies for prior occupation of the global market on blockbuster biologics. However, to achieve approval for biosimilars, developing companies face many hurdles in process development, manufacturing, analysis, clinical trials, and CMC (chemical, manufacturing and controls) documentation. Recent evolutionary progress in science, engineering, and process technology throughout the biopharmaceutical industry supports to show similarity between originator and biosimilar products. The totality of evidence has been able to demonstrate the quality, efficacy, and safety of biosimilars whereas a lack of interchangeability and international standards has to be addressed. Further understanding of the timing importance by regulatory agencies will be key to maximizing the value of biosimilars.  相似文献   

3.
Biosimilars are protein products that are sufficiently similar to a biopharmaceutical already approved by a regulatory agency. Several biotechnology companies and generic drug manufacturers in Asia and Europe are developing biosimilars of tumor necrosis factor inhibitors and rituximab. A biosimilar etanercept is already being marketed in Colombia and China. In the US, several natural source products and recombinant proteins have been approved as generic drugs under Section 505(b)(2) of the Food, Drug, and Cosmetic Act. However, because the complexity of large biopharmaceuticals makes it difficult to demonstrate that a biosimilar is structurally identical to an already approved biopharmaceutical, this Act does not apply to biosimilars of large biopharmaceuticals. Section 7002 of the Patient Protection and Affordable Care Act of 2010, which is referred to as the Biologics Price Competition and Innovation Act of 2009, amends Section 351 of the Public Health Service Act to create an abbreviated pathway that permits a biosimilar to be evaluated by comparing it with only a single reference biological product. This paper reviews the processes for approval of biosimilars in the US and the European Union and highlights recent changes in federal regulations governing the approval of biosimilars in the US.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):1155-1162
The concept of biosimilars has spread from Europe to other regions throughout the world, and many regions have drafted regulatory guidelines for their development. Recently, a paradigm shift in regulatory thinking on the non-clinical development of biosimilars has emerged in Europe: In vivo testing should follow a step-wise approach rather than being performed by default. To not require animal testing at all in some instances can well be seen as a revolutionary, but science-based, step. Here, we describe the internal discussions that led to this paradigm shift. The mainstay for the establishment of biosimilarity is the pharmaceutical comparability based on extensive physicochemical and biological characterization. Pharmacodynamic comparability can be evaluated in in vitro assays, whereas pharmacokinetic comparability is best evaluated in clinical studies. It is considered highly unlikely that new safety issues would arise when comparability has been demonstrated based on physicochemical and in vitro comparative studies.  相似文献   

5.
6.
Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production‐process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1139–1149, 2015  相似文献   

7.
8.
《Trends in biotechnology》2023,41(7):847-850
The impending loss of market exclusivity for established biologic products creates a lucrative market opportunity for biosimilars. However, complex and variable regulatory requirements between regions present challenges to developers. Understanding the regulatory differences between two major markets, Europe and China, will expedite entry into these key markets.  相似文献   

9.
随着生物药专利失效期到来所带来的成本降低、药物可及性增加及巨大市场空间等因素影响,各大企业对生物仿制药的开发表现出浓厚的兴趣,纷纷涉足这一领域,然而由于生物仿制药的特殊性,开发及产业化困难重重。基于以上背景,首先分析了国内外生物医药行业宏观经济环境、行业政策环境、法律监管环境等外部环境,然后对当前生物仿制药开发存在的关键性技术共性问题进行了阐述。在此基础上对国内外主要生物仿制药企业现状进行分析,提出了我国与国外生物仿制药方面存在的主要差距。在上述分析的基础上,利用SWOT工具进行战略分析,指出我国生物仿制药应该执行的SO战略为主,SW战略为辅的策略。最后提出了一些参考建议。  相似文献   

10.
A biosimilar drug is defined in the US Food and Drug Administration (FDA) guidance document as a biopharmaceutical that is highly similar to an already licensed biologic product (referred to as the reference product) notwithstanding minor differences in clinically inactive components and for which there are no clinically meaningful differences in purity, potency, and safety between the two products. The development of biosimilars is a challenging, multistep process. Typically, the assessment of similarity involves comprehensive structural and functional characterization throughout the development of the biosimilar in an iterative manner and, if required by the local regulatory authority, an in vivo nonclinical evaluation, all conducted with direct comparison to the reference product. In addition, comparative clinical pharmacology studies are conducted with the reference product. The approval of biosimilars is highly regulated although varied across the globe in terms of nomenclature and the precise criteria for demonstrating similarity. Despite varied regulatory requirements, differences between the proposed biosimilar and the reference product must be supported by strong scientific evidence that these differences are not clinically meaningful. This review discusses the challenges faced by pharmaceutical companies in the development of biosimilars.  相似文献   

11.
12.
Agbiotech 2.0     
  相似文献   

13.
PSST-2.0     
PSST-2.0 (Protein Data Bank [PDB] Sequence Search Tool) is an updated version of the earlier PSST (Protein Sequence Search Tool), and the philosophy behind the search engine has remained unchanged. PSST-2.0 is a Web-based, interactive search engine developed to retrieve required protein or nucleic acid sequence information and some of its related details, primarily from sequences derived from the structures deposited in the PDB (the database of 3-dimensional [3-D] protein and nucleic acid structures). Additionally, the search engine works for a selected subset of 25% or 90% non-homologous protein chains. For some of the selected options, the search engine produces a detailed output for the user-uploaded, 3-D atomic coordinates of the protein structure (PDB file format) from the client machine through the Web browser. The search engine works on a locally maintained PDB, which is updated every week from the parent server at the Research Collaboratory for Structural Bioinformatics, and hence the search results are up to date at any given time. AVAILABILITY: PSST-2.0 is freely accessible via http://pranag.physics.iisc.ernet.in/psst/ or http://144.16.71.10/psst/.  相似文献   

14.
MHCPred 2.0     
The accurate computational prediction of T-cell epitopes can greatly reduce the experimental overhead implicit in candidate epitope identification within genomic sequences. In this article we present MHCPred 2.0, an enhanced version of our online, quantitative T-cell epitope prediction server. The previous version of MHCPred included mostly alleles from the human leukocyte antigen A (HLA-A) locus. In MHCPred 2.0, mouse models are added and computational constraints removed. Currently the server includes 11 human HLA class I, three human HLA class II, and three mouse class I models. Additionally, a binding model for the human transporter associated with antigen processing (TAP) is incorporated into the new MHCPred. A tool for the design of heteroclitic peptides is also included within the server. To refine the veracity of binding affinities prediction, a confidence percentage is also now calculated for each peptide predicted. AVAILABILITY: As previously, MHCPred 2.0 is freely available at the URL http://www.jenner.ac.uk/MHCPred/ CONTACT: Darren R. Flower (darren.flower@jenner.ac.uk).  相似文献   

15.
Yeast 2.0     
  相似文献   

16.
Antibodies 2.0     
Perkel JM 《BioTechniques》2011,51(5):299, 301, 303
  相似文献   

17.
18.
PLoS Biology 2.0     
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号