首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-degrading enzyme (IDE) is a conserved Zn2+metalloendopeptidase involved in insulin degradation and in the maintenance of brain steady-state levels of amyloid β peptide (Aβ) of Alzheimer''s disease (AD). Our recent demonstration that IDE and Aβ are capable of forming a stoichiometric and extremely stable complex raises several intriguing possibilities regarding the role of this unique protein-peptide interaction in physiological and pathological conditions. These include a protective cellular function of IDE as a “dead-end chaperone” alternative to its proteolytic activity and the potential impact of the irreversible binding of Aβ to IDE upon its role as a varicella zoster virus receptor. In a pathological context, the implications for insulin signaling and its relationship to AD pathogenesis are discussed. Moreover, our findings warrant further research regarding a possible general and novel interaction between amyloidogenic peptides and other Zn2+metallopeptidases with an IDE-like fold and a substrate conformation-dependent recognition mechanism.Key words: amyloid, insulin-degrading enzyme, peptides, alzheimer''s disease, irreversible binding, metalloproteases  相似文献   

2.
The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.  相似文献   

3.
4.
Insulin-degrading enzyme (IDE) is central to the turnover of insulin and degrades amyloid beta (Abeta) in the mammalian brain. Biochemical and genetic data support the notion that IDE may play a role in late onset Alzheimer disease (AD), and recent studies suggest an association between AD and diabetes mellitus type 2. Here we show that a natively folded recombinant IDE was capable of forming a stable complex with Abeta that resisted dissociation after treatment with strong denaturants. This interaction was also observed with rat brain IDE and detected in an SDS-soluble fraction from AD cortical tissue. Abeta sequence 17-27, known to be crucial in amyloid assembly, was sufficient to form a stable complex with IDE. Monomeric as opposed to aggregated Abeta was competent to associate irreversibly with IDE following a very slow kinetics (t(1/2) approximately 45 min). Partial denaturation of IDE as well as preincubation with a 10-fold molar excess of insulin prevented complex formation, suggesting that the irreversible interaction of Abeta takes place with at least part of the substrate binding site of the protease. Limited proteolysis showed that Abeta remained bound to a approximately 25-kDa N-terminal fragment of IDE in an SDS-resistant manner. Mass spectrometry after in gel digestion of the IDE .Abeta complex showed that peptides derived from the region that includes the catalytic site of IDE were recovered with Abeta. Taken together, these results are suggestive of an unprecedented mechanism of conformation-dependent substrate binding that may perturb Abeta clearance, insulin turnover, and promote AD pathogenesis.  相似文献   

5.
The amyloid precursor protein (APP) is one of the major proteins involved in Alzheimer disease (AD). Proteolytic cleavage of APP gives rise to amyloid-β (Aβ) peptides that aggregate and deposit extensively in the brain of AD patients. Although the increase in levels of aberrantly folded Aβ peptide is considered to be important to disease pathogenesis, the regulation of APP processing and Aβ metabolism is not fully understood. Recently, the British precursor protein (BRI2, ITM2B) has been implicated in influencing APP processing in cells and Aβ deposition in vivo. Here, we show that the wild type BRI2 protein reduces plaque load in an AD mouse model, similar to its disease-associated mutant form, ADan precursor protein (ADanPP), and analyze in more detail the mechanism of how BRI2 and ADanPP influence APP processing and Aβ metabolism. We find that overexpression of either BRI2 or ADanPP reduces extracellular Aβ by increasing levels of secreted insulin-degrading enzyme (IDE), a major Aβ-degrading protease. This effect is also observed with BRI2 lacking its C-terminal 23-amino acid peptide sequence. Our results suggest that BRI2 might act as a receptor protein that regulates IDE levels that in turn influences APP metabolism in a previously unrecognized way. Targeting the regulation of IDE may be a promising therapeutic approach to sporadic AD.  相似文献   

6.
Metal-associated amyloid-β species in Alzheimer's disease   总被引:1,自引:0,他引:1  
Highly concentrated metals such as Cu, Zn, and Fe are found in amyloid-β (Aβ) plaques within the brain of Alzheimer's disease (AD). In vitro and in vivo studies have suggested that metal binding to Aβ could facilitate Aβ aggregation and generate reactive oxygen species (ROS), which could contribute to the neuropathogenesis of AD. The connection between metal-Aβ interaction/reactivity and AD development, however, has not been clearly revealed owing to the complexity of the disease. In this review, metal-Aβ interaction/reactivity and its relation to neurotoxicity are briefly discussed. Additionally, our review illustrates the recent progress of small molecules, capable of targeting metal-Aβ species and modulating their interaction/reactivity, which could offer a promising approach to interrogate their role in AD.  相似文献   

7.
Alzheimer's disease (AD) is hallmarked by amyloid‐β (Aβ) peptides accumulation and aggregation in extracellular plaques, preceded by intracellular accumulation. We examined whether intracellular Aβ can be cleared by cytosolic peptidases and whether this capacity is affected during progression of sporadic AD (sAD) in humans and in the commonly used APPswePS1dE9 and 3xTg‐AD mouse models. A quenched Aβ peptide that becomes fluorescent upon degradation was used to screen for Aβ‐degrading cytoplasmic peptidases cleaving the aggregation‐prone KLVFF region of the peptide. In addition, this quenched peptide was used to analyze Aβ‐degrading capacity in the hippocampus of sAD patients with different Braak stages as well as APPswePS1dE9 and 3xTg‐AD mice. Insulin‐degrading enzyme (IDE) was found to be the main peptidase that degrades cytoplasmic, monomeric Aβ. Oligomerization of Aβ prevents its clearance by IDE. Intriguingly, the Aβ‐degrading capacity decreases already during the earliest Braak stages of sAD, and this decline correlates with IDE protein levels, but not with mRNA levels. This suggests that decreased IDE levels could contribute to early sAD. In contrast to the human data, the commonly used APPswePS1dE9 and 3xTg‐AD mouse models do not show altered Aβ degradation and IDE levels with AD progression, raising doubts whether mouse models that overproduce Aβ peptides are representative for human sAD.  相似文献   

8.
Hyun J  Hashimoto C 《Fly》2011,5(1):53-57
Insulin-degrading enzyme (IDE) degrades insulin and other peptides, including the Aβ peptide of Alzheimer's disease. However, the mechanism by which IDE acts on its substrates in vivo is unclear, and its role in pathogenesis of type 2 diabetes and Alzheimer's disease is controversial. Here, we show that in Drosophila knocking down IDE in insulin-producing cells (IPCs) of the brain results in increased body weight and fecundity, decreased circulating sugar levels, and reduced lifespan. Moreover, knocking down and over-expressing IDE in IPCs have opposite physiological effects. As mis-regulated insulin signaling in peripheral tissues is known to cause similar phenotypes, our data suggest a role for Drosophila IDE in determining the level of insulin-like peptides made by IPCs that systemically activate insulin signaling.  相似文献   

9.
Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-β (Aβ) clearance due to competition for their common and main depurative mechanism — the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Aβ, brain hyperinsulinism may deprive Aβ of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy. In fact, diabetes subjects are more prone to develop extense and earlier-than-usual leukoaraiosis (White Matter High-Intensity Lesions — WMHL). WMHL are usually present at different degrees in brain scans of elderly people. People with more advanced WMHL are at increased risk for executive dysfunction, cognitive impairment and dementia. Clinical phenotypes associated with insulin resistance possibly represent true clinical models for brain and systemic aging.  相似文献   

10.
Pathogenesis of Alzheimer’s disease (AD) is characterized by accumulation of extracellular deposits of amyloid β-protein (Aβ) in the brain. The steady state level of Aβ in the brain is determined by the balance between its production and removal; the latter occurring through egress across blood and CSF barriers as well as Aβ degradation. The major Aβ-degrading enzymes in the brain are neprilysin (NEP) and insulin-degrading enzyme (IDE), which may promote Aβ deposition in patients with sporadic late-onset AD. Epidemiological studies have suggested an inverse relationship between the adipocytokine leptin levels and the onset of AD. However, the mechanisms underlying the relationship remain uncertain. We investigated whether leptin is associated with Aβ degradation by inducing NEP and IDE expression within primary cultured astrocytes. Leptin significantly decreased the expression of NEP but not IDE in a concentration- and time-dependent manner through the activation of extracellular signal-regulated kinase (ERK) in cultured rat astrocytes. Furthermore, leptin inhibited the degradation of exogenous Aβ in primary cultured astrocytes. These results suggest that leptin suppresses Aβ degradation by NEP through activation of ERK.  相似文献   

11.
阿尔茨海默病(Alzheimer’s disease,AD)是一种以进行性认知功能减退为特征的神经退行性疾病。发病的确切机制尚未完全清楚。目前认为胰岛素抵抗与胰岛素信号系统受损是加速AD发病的危险因素,胰岛素降解酶(insulin-degrading enzyme,IDE)在糖代谢异常促使AD发病的过程中发挥重要的作用。除调节β淀粉样蛋白降解和清除之外,还可能通过调节tau蛋白磷酸化水平,协同载脂蛋白Ee4(ApoEe4)及影响胰岛素信号传导等参与AD的发病机制。本文就IDE生物学特性及在AD发病机制中的作用作一综述。  相似文献   

12.
To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met35–Val36 as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.  相似文献   

13.
The pathogenesis of Alzheimer's disease (AD) is complex, though the clinical failures of anti-AD candidates targeting Aβ production (such as β- and γ-secretase inhibitors) make people suspect the Aβ hypothesis, in which the neurotoxicity of Aβ is undoubtedly involved. According to studies, >95% of AD patients with sporadic AD are primarily associated with abnormal Aβ clearance. Therefore, drugs that increase Aβ clearance are becoming new prospects for the treatment of AD. Here, the novel small molecule OAB-14, designed using bexarotene as the lead compound, significantly alleviated cognitive impairments in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice after administration for 15?days or 3?months. OAB-14 rapidly cleared 71% of Aβ by promoting microglia phagocytosis and increasing IDE and NEP expression. This compound also attenuated the downstream pathological events of Aβ accumulation, such as synaptic degeneration, neuronal loss, tau hyperphosphorylation and neuroinflammation in APP/PS1 mice. Moreover, OAB-14 had no significant effect on body weight or liver toxicity after acute and chronic treatment. OAB-14 was well tolerated and its maximum-tolerated dose in mice was >4.0?g/kg. Based on these findings, OAB-14 represents a promising new candidate for AD treatment.  相似文献   

14.
It is known that insulin-degrading-enzyme (IDE) plays a crucial role in the clearance of Alzheimer’s amyloid-β (Aβ). The cysteine-free IDE mutant (cf-E111Q-IDE) is catalytically inactive against insulin, but its effect on Aβ degradation is unknown that would help in the allosteric modulation of the enzyme activity. Herein, the degradation of Aβ(1–40) by cf-E111Q-IDE via a non-chaperone mechanism is demonstrated by NMR and LC-MS, and the aggregation of fragmented peptides is characterized using fluorescence and electron microscopy. cf-E111Q-IDE presented a reduced effect on the aggregation kinetics of Aβ(1–40) when compared with the wild-type IDE. Whereas LC-MS and diffusion ordered NMR spectroscopy revealed the generation of Aβ fragments by both wild-type and cf-E111Q-IDE. The aggregation propensities and the difference in the morphological phenotype of the full-length Aβ(1–40) and its fragments are explained using multi-microseconds molecular dynamics simulations. Notably, our results reveal that zinc binding to Aβ(1–40) inactivates cf-E111Q-IDE’s catalytic function, whereas zinc removal restores its function as evidenced from high-speed AFM, electron microscopy, chromatography, and NMR results. These findings emphasize the catalytic role of cf-E111Q-IDE on Aβ degradation and urge the development of zinc chelators as an alternative therapeutic strategy that switches on/off IDE’s function.  相似文献   

15.
阿尔兹海默病(AD)是以脑中β淀粉样蛋白(Aβ)累积和神经纤维缠绕(NFTs)为主要病理特征的神经退行性疾病,而胰岛素降解酶(IDE)是人体内最主要的Aβ降解酶之一。因此,IDE在AD进程中的作用受到了研究人员的广泛关注。大多数研究显示,AD的病理进程伴随着脑中IDE编码基因的表达和IDE活性的下降。IDE敲除动物也能够表现出AD样表型,同时已有研究尝试靶向于IDE进行AD的治疗。本文通过总结IDE在AD患者和AD模型动物脑中表达情况的变化,以及IDE敲除动物的表型,对近期IDE在AD发生中作用的研究进行了总结。  相似文献   

16.
The incidence of Alzheimer disease (AD) and diabetes mellitus (DM) is increasing at an alarming rate and has become a major public health concern worldwide. Recent epidemiological studies have provided direct evidence that DM is a strong risk factor for AD; this finding is now attracting attention. However, the underlying mechanisms for this association remain largely unknown. Previous in vitro and in vivo studies reported that diabetic conditions could cause an increase in the beta-amyloid peptide (Aβ) levels, which exhibits neurotoxic properties and plays a causative role in AD. However, unexpectedly, recent clinicopathological studies have shown no evidence that the pathological hallmarks of AD, including amyloid plaque, were increased in the brains of diabetic patients, suggesting that DM could affect the pathogenesis of AD through mechanisms other than modulation of Aβ metabolism. One possible mechanism is the alteration in brain insulin signaling. It has been shown that insulin signaling is involved in a variety of neuronal functions, and that it also plays a significant role in the pathophysiology of AD. Thus, the modification of neuronal insulin signaling by diabetic conditions may contribute to AD progression. Another possible mechanism is cerebrovascular alteration, a common pathological change observed in both diseases. Accumulating evidence has suggested the importance of Aβ-induced cerebrovascular dysfunction in AD, and indicated that pathological interactions between the receptor for advanced glycation end products (RAGE) and Aβ peptides may play a role in this dysfunction. Our study has provided a further understanding of the potential underlying mechanisms linking DM and AD by establishing novel mouse models showing pathological manifestations of both diseases. The current review summarizes the results from recent studies on the pathological relationship between DM and AD while focusing on brain insulin signaling and cerebrovascular alteration. It also discusses the therapeutic potential of these findings and future treatment strategies for AD.  相似文献   

17.
A growing body of Alzheimer's disease (AD) research is concerned with understanding the interaction between amyloid-β (Aβ) peptides and metal ions (e.g., Cu, Zn, and Fe) and determining the biological relevance of the metal-Aβ complexes to essential metal homeostasis and neuronal cell loss. Previously, many studies have dealt with the interaction between Aβ and "single" but not "multiple" metal ions in terms of binding affinity and coordination chemistry. In the present work, we found that Zn(II) ions modified the configuration of Aβ-Cu(II) by forming Zn(II)-Aβ-Cu(II) ternary complexes. As a result, the catalytic activity of Aβ-Cu(II) against a biological ascorbic acid species was repressed by Zn(II) binding. The formation of the ternary complex can therefore explain the protective role of Zn(II) in AD.  相似文献   

18.
Manabu Tsuda 《FEBS letters》2010,584(13):2916-926
Insulin-degrading enzyme (IDE) is implicated in the pathogenesis of type 2 diabetes mellitus (DM2) and Alzheimer’s disease (AD). Here we provide genetic evidence that Drosophila Ide (dIde) antagonizes the insulin signaling pathway and human Aβ-induced neurotoxicity in Drosophila. In this study, we also generated a dIde knockout mutant (dIdeKO) by gene targeting, and found that loss of IDE increases the content of the major insect blood sugar, trehalose, thus suggesting a conserved role of IDE in sugar metabolism. Using dIdeKO as a model, further investigations into the biological functions of IDE and its role in the pathogenesis of DM2 and AD can be made.  相似文献   

19.
20.
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Aβ), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Aβ aggregation may not only be the consequence of excitotoxicity, aberrant Ca2+ signals, and proinflammatory cytokines such as TNF-α, but may also promote these pathological effectors. At the molecular level, insulin resistance and Aβ disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号