首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragmentation is a degradation pathway ubiquitously observed in proteins despite the remarkable stability of peptide bond; proteins differ only by how much and where cleavage occurs. The goal of this review is to summarize reports regarding the non-enzymatic fragmentation of the peptide backbone of monoclonal antibodies (mAbs). The sites in the polypeptide chain susceptible to fragmentation are determined by a multitude of factors. Insights are provided on the intimate chemical mechanisms that can make some bonds prone to cleavage due to the presence of specific side-chains. In addition to primary structure, the secondary, tertiary and quaternary structures have a significant impact in modulating the distribution of cleavage sites by altering local flexibility, accessibility to solvent or bringing in close proximity side chains that are remote in sequence. This review focuses on cleavage sites observed in the constant regions of mAbs, with special emphasis on hinge fragmentation. The mechanisms responsible for backbone cleavage are strongly dependent on pH and can be catalyzed by metals or radicals. The distribution of cleavage sites are different under acidic compared to basic conditions, with fragmentation rates exhibiting a minimum in the pH range 5–6; therefore, the overall fragmentation pattern observed for a mAb is a complex result of structural and solvent conditions. A critical review of the techniques used to monitor fragmentation is also presented; usually a compromise has to be made between a highly sensitive method with good fragment separation and the capability to identify the cleavage site. The effect of fragmentation on the function of a mAb must be evaluated on a case-by-case basis depending on whether cleavage sites are observed in the variable or constant regions, and on the mechanism of action of the molecule.Key words: fragmentation, cleavage, clipping, hinge region, peptide bond hydrolysis, IgG1, IgG2  相似文献   

2.
Summary The technology for the production of murine monoclonal antibodies has been refined enormously since its introduction in 1975. However, the technology for generating human monoclonal antibodies has only recently come into its own. In this review, three currently available approaches to the production of human monoclonal antibodies are described. These include the hybridoma technique, based on the fusion of antibody-producing human B lymphocytes with either mouse or human myeloma or lymphoblastoid cells; the EBV immortalization technique, based on the use of Epstein-Barr virus (EBV) to immortalize antigen-specific human B lymphocytes; and the EBV-hybridoma technique, based on a combination of the first two methods.The EBV-hybridoma system retains the advantageous features of the other two systems while overcoming their pitfalls and may be the current method of choice for producing human monoclonal antibodies with a defined specificity.Recipient of a W.H.O. training scholarship in Tropical Diseases.Fellow of the National Cancer Institute of Canada.  相似文献   

3.
4.
5.
6.
Monoclonal antibodies (mAbs) are large molecules intended to bind to specific targets often expressed on the immune system, and to treat various immunopathological conditions. Therefore, mAbs can be considered to have a high potential for immunotoxicity, which is reflected in the clinical experience accumulated on mAbs-induced adverse effects related to immunosuppression, immunostimulation and hypersensitivity (immunogenicity). So far, non clinical immunotoxicity studies have been inadequate to address all safety issues in relation to the possible immunotoxicity of mAbs, because they are fraught with limitations and pitfalls primarily related to the lack of relevant animal species. In addition, clinical studies rarely include validated end-points dedicated to the prediction of immunotoxicity. With the ongoing development of mAbs as novel therapeutic strategies for a wide variety of diseases, efforts should be paid to improve our understanding of mAbs-induced immunotoxic effects and design dedicated strategies to assess their immunological safety, both non clinically and clinically.Key words: immunotoxicology, monoclonal antibodies, immunological safety evaluation  相似文献   

7.
《MABS-AUSTIN》2013,5(2):104-111
Monoclonal antibodies (mAbs) are large molecules intended to bind to specific targets often expressed on the immune system, and to treat various immunopathological conditions. Therefore, mAbs can be considered to have a high potential for immunotoxicity, which is reflected in the clinical experience accumulated on mAbs-induced adverse effects related to immunosuppression, immunostimulation, and hypersensitivity (immunogenicity). So far, non clinical immunotoxicity studies have been inadequate to address all safety issues in relation to the possible immunotoxicity of mAbs, because they are fraught with limitations and pitfalls primarily related to the lack of relevant animal species. In addition, clinical studies rarely include validated end-points dedicated to the prediction of immunotoxicity. With the ongoing development of mAbs as novel therapeutic strategies for a wide variety of diseases, efforts should be paid to improve our understanding of mAbs-induced immunotoxic effects and design dedicated strategies to assess their immunological safety, both non clinically and clinically.  相似文献   

8.
The mAb R18-9 recognizes a cross-reacting idiotope outside the Ag-combining site of the syngeneic anti HLA-DQw3 mAb KS13, whereas the mAb R1-38, KO3-34, KO3-256, and KO3-335 recognize spatially close private idiotopes within the Ag-combining site of mAb KS13. All the analyzed Id require the association of the H and L chain of mAb KS13 for their expression. The mAb R1-38 and R18-9 were shown to markedly differ in their ability to modulate immune lysis of target cells mediated by mAb KS13. mAb R18-9 did not affect C-dependent lysis of cultured B lymphoid cells WALK mediated by mAb KS13, but enhanced cell-dependent mAb KS13-mediated lysis. mAb R1-38 inhibited both C and cell-dependent lysis mediated by mAb KS13. The effect was influenced by the incubation conditions. mAb R1-38 completely inhibited lysis when it was preincubated with mAb KS13 before being added to target cells, inhibited it partially when it was added simultaneously with mAb KS13 to target cells and did not affect it when added to target cells which had been preincubated with mAb KS13. Neither mAb R1-38 nor R18-9 in combination with mAb KS13 modulated T cell proliferation induced by allogeneic HLA mismatched lymphocytes. The system we have described may represent a useful in vitro model to investigate the mechanism(s) by which antiidiotypic antibodies may influence the outcome of organs transplanted in recipients with a history of humoral presensitization to donor's HLA Ag.  相似文献   

9.
To produce human monoclonal antibodies in bacteria, a gene repertoire of IgM variable regions was isolated from human peripheral B lymphocytes by the polymerase chain reaction. Alternatively, synthetic antibody genes with random hypervariable regions are being generated that may provide libraries of even higher complexity. For the selection of specific monoclonal antibodies from these libraries, we have developed twoE. coli vector systems that facilitate the surface display of an antibody physically linked to its own gene. The phagemid pSEX encodes a fusion protein of an antigen binding domain (Fv-antibody) with the docking protein (pIII) of filamentous phages. Specific antibody genes can therefore be enriched by antigen affinity chromatography. The plasmid pAP1 encodes a fusion protein of an Fv-antibody with a bacterial cell-wall protein. Bacteria carrying this plasmid express functional Fv-antibodies tightly bound to their surface. This should enable the selection of single cells with a fluorescence-assisted cell sorter (FACS) using labeled antigen or by adsorption to immobilized antigen. These vectors permit three major principles of the antibody response to be mimicked inE. coli:
  1. Generation of a highly complex antibody repertoire;
  2. Clonal selection procedures for library screening; and
  3. The possibility of increasing a given affinity by repeated rounds of mutation and selection.
  相似文献   

10.
11.
Mitogen-like monoclonal anti-actin antibodies   总被引:1,自引:0,他引:1  
Monoclonal antibodies (IgM kappa) have been produced to actin isolated electrophoretically from L cell extracts. These monoclonal anti-actin antibodies bind to intact L cells and modulate DNA synthesis and cell proliferation, much like affinity-purified polyclonal rabbit antibody to the same Mr 42,000 actin. In addition, monoclonal antibodies specific for actin from Entamoeba histolytica also bound to and modulated the growth of L cells. A monoclonal antibody directed against a neuroblastoma surface antigen did not produce stimulation of L cells, and the binding activity of anti-actin monoclonal antibody to L cells was removed by absorption with actin covalently coupled to Sepharose. These observations demonstrate the specificity of interaction between the anti-actin monoclonal antibodies and the surface of intact L cells. We conclude that a surface actin-like molecule on the L cell, when bound by specific monoclonal antibody, initiates a stimulatory signal which results in enhanced cellular metabolism.  相似文献   

12.
Immunization of BALB/c mice with Rickettsia prowazekii antigens, Bordetella pertussis toxin and Legionella pneumophila cytolysin induces the synthesis of IgM autoantibodies of different specificity. Among monoclonal antibodies, multispecific antibodies with a wide reactivity spectrum have been found to make up high percentage (30-80%). Monoclonal antibodies interact with different bacterial antigens and tissue substances. A hypothesis has been put forward that normally the injection of the antigen is followed by the appearance of antigen-nonspecific "immunological noise", including the synthesis of both tissue-specific and multispecific autoantibodies. Such antigen nonspecific "immunological noise" must have a certain threshold level which can be determined with the use of hybridoma techniques. This problem is particularly topical for bacterial antigens, as many of them are used in the development of vaccinal preparations, which may lead to an increase in the synthesis of autoantibodies and induce different autoimmune disturbances in the body.  相似文献   

13.
14.
15.
A method was developed to screen hybridomas secreting immunoglobulin to cell surface receptors by observing the ability of antibodies to inhibit cell attachment and survival. The model used to develop the screening procedure involved mouse hybridomas secreting monoclonal IgG to human epidermal growth factor (EGF) receptors. Conditioned medium from these hybridomas inhibited the attachment and subsequent growth of human foreskin fibroblasts unless excess EGF was added to the cultures. This procedure allows for the selection of hybridomas producing increased levels of immunoglobulin.  相似文献   

16.
17.
《MABS-AUSTIN》2013,5(5):505-516
The development of mAbs remains high on the therapeutic agenda for the majority of pharmaceutical and biotechnology companies. Often, the only relevant species for preclinical safety assessment of mAbs are non-human primates (NHPs), and this raises important scientific, ethical and economic issues. To investigate evidence-based opportunities to minimize the use of NHPs, an expert working group with representatives from leading pharmaceutical and biotechnology companies, contract research organizations and institutes from Europe and the USA, has shared and analyzed data on mAbs for a range of therapeutic areas. This information has been applied to hypothetical examples to recommend scientifically appropriate development pathways and study designs for a variety of potential mAbs. The addendum of ICHS6 provides a timely opportunity for the scientific and regulatory community to embrace strategies which minimize primate use and increase efficiency of mAb development.  相似文献   

18.
19.
20.
The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs.Key words: monoclonal antibodies, thermodynamic stability, cold denaturation, free energy, fluorescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号