首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro.Key words: adipose tissue-organotypic culture, three-dimensional, tissue fragments, peripheral zone, central zone, mature adipocytes, preadipocytes (immature adipocytes), mesenchymal stem cells, adipokines, tissue regeneration  相似文献   

2.
Obesity, a risk factor for colon cancer, is associated with elevated serum levels of leptin, a protein produced by adipocytes. The aim of the present study was to clarify the effects of adipose tissue on colon cancer proliferation by using cultured cell lines. To achieve this, colon cancer cells (CACO-2, T84, and HT29) were cocultured with adipose tissue, isolated mature adipocytes, and isolated preadipocytes in a three-dimensional collagen gel culture system. The adipocytes and preadipocytes used were isolated from C57BL/6J and leptin-deficient ob/ob mice. Proliferation of the cancer cells was evaluated by nuclear bromodeoxyuridine uptake. The adipose tissue, mature adipocytes, and preadipocytes isolated from C57BL/6J mice significantly increased the proliferation of the colon cancer cells. This trophic effect of mature adipocytes on the cancer cell lines was observed only for cells from lean littermates and not for those from ob/ob mice. In contrast, the trophic effect of preadipocytes was not abolished in ob/ob mice, and this finding was supported by the result that leptin had a trophic effect on cancer cells. In conclusion, adipocytes were able to enhance the proliferation of colon cancer cells in vitro, partly via leptin, suggesting that adipose tissues, including mature adipocytes and preadipocytes, may promote the growth of colorectal cancer.  相似文献   

3.
4.
Adipose tissue consists of mature adipocytes and endothelial cells, which are all supported by the extracellular matrix. Adipose tissue development is closely associated with angiogenesis. However, the adipocyte-endothelial cell interaction is unclear. To address this issue, we examined the effects of endothelial cells on the growth, apoptosis, and differentiation of mature adipocytes in three-dimensional collagen gel culture of the adipocytes with or without rat lung endothelial (RLE) cells. Spindle-shaped preadipocytes, an immature type of adipocyte, developed more actively around the adhesion sites of RLE cells to mature adipocytes in the coculture (rate of preadipocytes: 18.9+/-4.3%) than in the culture of adipocytes alone (2.0+/-5.1%). With respect to growth, RLE cells induced about a three-fold increase in bromodeoxyuridine uptake of mature adipocytes alone, while RLE cells did not influence the uptake of preadipocytes. RLE cells also did not affect the apoptotic indices by immunohistochemistry for single-stranded DNA in mature adipocytes or preadipocytes. These phenomena were not reproduced by RLE cell-conditioned medium, or by certain endothelial cell-produced cytokines. Our in vitro study is the first demonstration that endothelial RLE cells promote the active development of preadipocytes together with increased growth of mature adipocytes. These results suggest that endothelial cells are involved in the enlargement mechanism of adipose tissue mass through their direct adhesion to mature adipocytes.  相似文献   

5.
In an attempt to characterize the preadipocytes of the adipose tissue of female rat, we studied by electron microscopy the differentiation of the cells into mature adipocytes in in vitro cultures. The preadipocytes arose from the stroma-vascular fraction of perirenal and perigenital adipose tissue. Culture of the preadipocytes in an enriched medium consisting of Dulbecco's medium supplemented with 10% fetal calf serum, antibiotics, rat triglycerides (0.5%), insulin (290 nM) and Tween 80 (0.1 mg/ml) induced their adipose conversion. The morphology of preadipocytes changed progressively. They accumulated fat granules, droplets and finally globules, which fused together. The cell organelles featured qualitative and quantitative modifications. The nucleus migrated with most mitochondria and a part of the Golgi system towards the cell periphery; the rough endoplasmic reticulum, dilated at the initial stage of differentiation became less and less conspicuous; the perinuclear Golgi system was dispersed between lipid droplets during fat accumulation; thick bundles of microfilaments, localized beneath the plasma membrane disappeared; large lipid droplets were surrounded by a network of microfilaments; many microvesicles and some "rosettes" typical of mature adipocytes could be observed. Nevertheless, the ultrastructural criteria did not allow to clearly discriminate the undifferentiated cells: early preadipocytes (without lipid droplets), adipoblasts and fibroblasts, all of these being probably present in the culture system.  相似文献   

6.
Factors involved in the growth of adipose tissue were examined by testing interactions under cell culture conditions between cellular components of this tissue and plasma from overfed rats. The cellular factors were capillary fragments, endothelial cells during growth and after confluence, fibroblasts, adipocytes and adipose precursor cells before determination (adipoblasts) and after determination (preadipocytes). Multiplying adipose precursor cells stimulated markedly the multiplication of endothelial cells, while their own multiplication was inhibited. The stimulatory effect was partially transferred into the culture medium but not remaining in culture dishes conditioned by preceding cultures of adipose precursor cells, removed by Tris-EDTA buffer or mechanically. The activity was apparently not dependent on feeding conditions. Plasma from overfed rats did not affect endothelial or adipose precursor cell multiplication, but caused more rapid lipid filling of the latter. Endothelial cells facilitated lipid accumulation of preadipocytes. These results indicate that when adipose tissue is expanding by adipocyte multiplication capillarization is stimulated secondarily, being then capable of facilitating triglyceride accumulation in adipocytes.  相似文献   

7.
Although there have been reports supporting the presence of the TSH receptor (TSHR) in human adipose tissue, these findings are still not universally accepted. Contributing to the controversy is a paucity of data about the physiological role the TSH receptor might play in adipose cells. In addition to mature lipid-filled adipocytes, adipose tissue also harbors a pool of specialized, fibroblast-like preadipocytes within the stromal-vascular compartment. Upon appropriate induction, preadipocytes can either differentiate into adipocytes or undergo apoptosis. Since TSHR has been detected in preadipocytes and adipocytes, its potential impact on adipose tissue function may relate to differentiation stage-specific cellular properties.  相似文献   

8.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

9.
Our objective was to investigate expression of A disintegrin and metalloproteinase (ADAM) and ADAM proteins with a thrombospondin (TS) motif (ADAMTS) family members in adipose tissue of lean and obese mice. Five-week-old male mice were kept on standard chow (SFD) or on high fat diet (HFD) for 15 weeks, and subcutaneous (SC) and gonadal (GON) adipose tissue, as well as mature adipocytes and stromal-vascular (S-V) cells were harvested. mRNA levels of plasminogen activator inhibitor-1 (PAI-1), tumor necrosis factor-alpha (TNF-alpha), ADAM-17 (TACE or TNF-alpha converting enzyme), ADAMTS-1 and ADAMTS-8 were quantified in isolated adipose tissues and cell fractions, and during differentiation of murine preadipocytes. The HFD resulted in a significantly enhanced weight of isolated SC and GON fat pads, and in enhanced blood levels of glucose, cholesterol and PAI-1. ADAM-17, TNF-alpha, PAI-1, ADAMTS-1 and ADAMTS-8 mRNA were detected in both SC and GON adipose tissue of lean mice (SFD). In SC adipose tissue of obese mice (HFD), the expression of ADAM-17 and PAI-1 was enhanced and that of ADAMTS-1 reduced, whereas in GON adipose tissue expression of TNF-alpha was enhanced and that of ADAMTS-8 reduced. In lean and obese mice, expression of ADAM-17, ADAMTS-1 and ADAMTS-8 was higher in the S-V cell fraction than in mature adipocytes. During differentiation of murine 3T3-F442A preadipocytes, expression of ADAM-17 and ADAMTS-1 remained virtually unaltered, whereas that of ADAMTS-8 decreased as adipocytes matured. Several ADAM and ADAMTS family members are expressed in adipose tissue and during differentiation of preadipocytes. Modulation of their expression upon development of obesity is adipose tissue-dependent.  相似文献   

10.
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the “browning of WAT,” leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.  相似文献   

11.
用成熟脂肪建立一种新的猪前体脂肪细胞培养模型   总被引:1,自引:0,他引:1  
用去分化的成熟脂肪细胞建立一种新的具有再增殖和再分化能力的猪前体脂肪细胞模型. 用“天花板” 培养法分离、培养1~3日龄仔猪皮下成熟脂肪细胞, 显微镜下观察细胞形态变化并计数, 流式细胞术检测细胞周期;油红O染色法检测脂肪细胞分化率, RT-PCR分析前体脂肪细胞标志基因Pref-1及成熟脂肪细胞关键转录因子PPARγ和C/EBPα等mRNA表达情况. 发现刚贴壁的细胞为单室脂滴成熟脂肪细胞, 油红O染色完全阳性; 14d后这种成熟脂肪细胞完全去分化为无脂滴的纤维状细胞, 并表达前体脂肪细胞标志基因Pref-1, 油红O染色阴性. 这种去分化的前体脂肪细胞在成脂诱导剂作用下,可重新分化为成熟的脂肪细胞. 结果证实,成熟脂肪细胞去分化后的前体脂肪细胞可重新增殖、分化为成熟脂肪细胞, 是一种新的有效的前体脂肪细胞模型.  相似文献   

12.
Collagenase digests of adipose tissue of the 3 to 4-month-old rat contain groups of 20-100 tightly arranged cells (islets) that copurify with the free-floating fat cells. When cultured along with mature adipocytes the islets give rise to cells, initially fibroblast-like, which rapidly proliferate, acquire lipid droplets, and differentiate into small adipocytes within 4-6 days without the addition to the medium of the agents usually required to produce differentiation in stromal-vascular preadipocytes. Differentiation of these cells is independent of confluence and begins as early as day 2 of culture. The proportion of islet-derived cells that differentiate is directly correlated with the number of mature adipocytes simultaneously present in the culture (r = .709; P less than 0.001). Culture medium exposed to mature adipocytes demonstrated differentiation-promoting activity, suggesting a paracrine effect of these cells. Islets may in vivo constitute a source for newly formed adipocytes in the adult rat. The differentiation of these potential adipocytes may be regulated, at least in part, by the mature fat cells via a paracrine effect.  相似文献   

13.
Human adipose tissue expresses all the components necessary for the production of angiotensin peptides. Although local effects of angiotensin II on cells from adipose tissue are beginning to be recognised, the expression of angiotensin receptors on human preadipocytes and adipocytes is still controversial. This study addresses the issue by monitoring the mRNA levels as well as the protein production of angiotensin II receptors of type 1 and 2 (AT 1 and AT 2 ) during differentiation of primary human preadipocytes in culture and in mature adipocytes. mRNA levels of the two receptor types are inversely correlated during adipose conversion. AT 1 receptor mRNA is greatly diminished within 12 days after induction of differentiation, while AT 2 receptor mRNA is elevated. mRNA levels of mature adipocytes confirm this trend. The regulation is not seen as strongly on the protein level. The amount of AT 2 receptor protein is increased, correlating well with the rise in specific glycerol-3-phosphate dehydrogenase activity of the cells, but the AT 1 receptor protein does not vary during the whole differentiation period. As the functional role of AT 2 receptors in adipose tissue is not known to date, further studies have to show if the AT 1 -mediated inhibitory actions on adipose conversion are downregulated in differentiating cells through decreased AT 1 /AT 2 receptor ratio.  相似文献   

14.
Adipocyte precursors from the stromal vascular fraction of human adipose tissue were allowed to differentiate in serum-free defined medium, whereafter their catecholamine stimulated lipolytic response was compared to that of mature isolated human adipocytes. Seventy-five to ninety percent of the fibroblast-like cells accumulated lipid droplets and glycerol-3-phosphate dehydrogenase activities of 1,000–2,800 mU/mg protein were measured in cell homogenates of differentiated cells. Lipolysis could be stimulated by both isoproterenol and norepinephrine in both differentiated preadipocytes as well as mature adipocytes. The results obtained with β-adrenergic agents suggested the presence of a higher affinity receptor in differentiated preadipocytes as compared to mature adipocytes. Mature adipocytes responded well to β-adrenergic agents, but no antilipolytic α2-adrenergic response was observed in the differentiated preadipocytes. The presence of Gi proteins in the differentiated preadipocytes was suggested by the antilipolytic effect of adenosine as well as the lipolytic activity generated by pertussis toxin. In conclusion, our medium supported the differentiation of a very high percentage of human preadipocytes which developed a sensitive β-adrenergic lipolytic response but which lacked an α2-adrenergic antilipolytic response.  相似文献   

15.
We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. This work was supported by grants from the Japan Ministry of Education, Science, Sports, and Culture (no. 19580348) and from MEXT. HAITEKU (2007–2011).  相似文献   

16.
Adipogenesis is a complex process that involves the differentiation of preadipocytes into mature adipocytes. We have developed two-dimensional (2D) and three-dimensional (3D) cell culture systems for the purpose of culturing and differentiating primary preadipocytes in vitro. Differentiating preadipocytes show multiple lipid droplet accumulation and comparable protein expression patterns to mature adipocytes in vivo. We report that in both in vitro systems terminally differentiated adipocytes show characteristics similar to those of mature adipocytes in vivo, assessed by the expression of the S100alpha/beta protein, insulin receptor and caveolin-1, and receptors for inflammatory mediators, namely tumor necrosis factor-alpha receptors I and II (TNFRI and TNFRII) and chemokine receptor 5 (CCR5). Our results demonstrate that the S100 protein, caveolin-1, and insulin receptor are expressed and up-regulated in differentiating and terminally differentiated cells. In addition, the receptors for TNFalpha are not present in preadipocytes but are expressed in differentiating preadipocytes and in differentiated adipocytes. Similarly, CCR5 was exclusively expressed in differentiating preadipocytes and terminally differentiated adipocytes, but not in preadipocytes. Both 2D and 3D culture models are highly robust and reproducible and offer the potential to study adipogenesis and cellular interactions closely resembling and comparable to those in vivo. Our 3D collagen system offers a distinct advantage over the 2D system in that the adipocytes remain confined within the matrix and remain intact during biochemical analysis. Moreover, the collagen matrix allows adipocytes to closely simulate morphological characteristics and behavior as in vivo whilst permitting manipulation of the microenvironment in vitro to study adipogenesis.  相似文献   

17.
Hepatocyte growth factor (HGF) is a potent mitogenic and angiogenic factor produced in human adipose tissue. In this study, we use 3T3-F442A preadipocytes to study the contribution of HGF to angiogenesis in an in vivo fat pad development model. As observed for human adipocytes, HGF is synthesized and secreted by 3T3-F442A preadipocytes and mature adipocytes. HGF knockdown with small-interfering RNA reduced HGF mRNA expression 82.3 +/- 4.2% and protein secretion 82.9 +/- 1.4% from 3T3-F442A preadipocytes. Silencing of HGF resulted in a 70.5 +/- 19.0% reduction in endothelial progenitor cell migration to 3T3-F442A-conditioned medium in vitro. 3T3-F442A preadipocytes injected under the skin of mice form a fat pad containing mature, lipid-filled adipocytes and a functional vasculature. At 72 h postinjection, expression of the endothelial cell genes TIE-1 and platelet endothelial cell adhesion molecule (PECAM)-1 was decreased 94.4 +/- 2.2 and 91.5 +/- 2.5%, respectively, in 3T3-F442A fat pads with HGF silencing. Knockdown of HGF had no effect on differentiation of 3T3-F442A preadipocytes to mature adipocytes in vitro or in vivo. In developing fat pads under the skin of HGF overexpressing transgenic mice, TIE-1 and PECAM-1 mRNA was increased 16.5- and 21.4-fold, respectively, at 72 h postinjection. The increase in gene expression correlated with immunohistochemical evidence of endothelial cell migration in the developing fat pad. These data suggest that HGF has a central role in regulating angiogenesis in adipose tissue.  相似文献   

18.
Obesity is characterized by increases in the number of mature adipocytes. Nascent adipocytes arise from mesenchymal stem cells (MSCs) by a multi-step process — MSCs are recruited to the adipocyte lineage forming determined preadipocytes, these committed progenitors proliferate, undergo growth arrest, and finally differentiate into mature adipocytes. Although the genetic mechanisms that control the differentiation of preadipocytes into mature adipocytes are understood to a large extent, the earliest events in adipogenesis — especially the commitment of MSCs into preadipocytes — are largely unknown. Recently, bone morphogenetic protein-4 (BMP-4) has been implicated in the commitment of pluripotent MSCs to the adipocyte lineage by two independent lines of investigation. First, growth-arrested 10T1/2 cells do not normally respond to a hormonal cocktail that causes various growth-arrested preadipocyte cell lines to differentiate into adipocytes, but if 10T1/2 cells are first treated with BMP-4 they will respond to these hormonal inducers by undergoing terminal adipocyte differentiation. Second, a preadipocyte cell line, A33 cells, derived from 10T1/2 cells after exposing the cells to the DNA methyltransferase inhibitor 5-azacytidine was shown to express BMP-4, and this endogenous BMP-4 expression is required for acquisition of the preadipocyte phenotype of these cells. A role for the BMP-4 signaling pathway in adipogenesis is discussed.  相似文献   

19.
Intracellular proteins are degraded by a number of proteases, including the ubiquitin-proteasome pathway (UPP). Impairments in the UPP occur during the aging of a variety of tissues, although little is known in regards to age-related alterations to the UPP during the aging of adipose tissue. The UPP is known to be involved in regulating the differentiation of a variety of cell types, although the potential changes in the UPP during adipose differentiation have not been fully elucidated. How the UPP is altered in aging adipose tissue and adipocyte differentiation and the effects of proteasome inhibition on adipocyte homeostasis and differentiation are critical issues to elucidate experimentally. Adipogenesis continues throughout the life of adipose tissue, with continual differentiation of preadipocytes essential to maintaining tissue function during aging, and UPP alterations in mature adipocytes are likely to directly modulate adipose function during aging. In this study we demonstrate that aging induces alterations in the activity and expression of principal components of the UPP. Additionally, we show that multiple changes in the UPP occur during the differentiation of 3T3-L1 cells into adipocytes. In vitro data link observed UPP alterations to increased levels of oxidative stress and altered adipose biology relevant to both aging and differentiation. Taken together, these data demonstrate that changes in the UPP occur in response to adipose aging and adipogenesis and strongly suggest that proteasome inhibition is sufficient to decrease adipose differentiation, as well as increasing oxidative stress in mature adipocytes, both of which probably promote deleterious effects on adipose aging.  相似文献   

20.
A novel family of cysteine-rich secreted proteins with unique tissue distribution has recently been identified. One of the members, resistin (for "resistance to insulin"), also called FIZZ3, was identified in a screen for molecules that are down-regulated in mature adipocytes upon administration of thiazolidinediones. The prototypical member of this family was originally identified from bronchoalveolar lavage fluid of inflamed lungs and designated FIZZ1 ("found in inflammatory zone"). This molecule was also found to be highly expressed in adipose tissue and was named resistin-like molecule alpha (RELMalpha). Here we demonstrate that RELMalpha inhibits the differentiation of 3T3-L1 preadipocytes into adipocytes. RELMalpha has no effect on proliferation of 3T3-L1 preadipocytes. Pretreatment of 3T3-L1 preadipocytes with RELMalpha does not affect insulin- or platelet-derived growth factor-induced mitogenesis. IRS-1 phosphorylation and glucose transport stimulated by insulin in mature adipocytes were also unaffected by RELMalpha. We show that RELMalpha forms disulfide-linked homooligomers based on results from electrophoresis under reducing and nonreducing conditions, coimmunoprecipitation experiments as well as by mass spectrometry. In addition, RELMalpha is able to form heterooligomers with resistin but not RELMbeta. Since RELMalpha is expressed by adipose tissue and it is a secreted factor, our findings suggest that RELMalpha may be involved in the control of the adipogenesis as well as in the process of muscle differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号