首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
New process to form a silk fibroin porous 3-D structure   总被引:1,自引:0,他引:1  
Tamada Y 《Biomacromolecules》2005,6(6):3100-3106
A new process to form fibroin spongy porous 3-D structure is reported herein. The process involves freezing and thawing fibroin aqueous solution in the presence of a small amount of an organic solvent. The process requires no freeze-drying, chemical cross-linking, or the aid of other polymeric materials. The solvent concentration, fibroin concentration, freezing temperature, and freezing duration affect the sponge formation, its porous structure, and its mechanical properties. Measurements by XRD and FTIR indicate that silk I and silk II crystalline structures exist in the fibroin sponge and that the secondary structure of fibroin is transformed to a beta-sheet from a random coil during this process. The tensile strength decreased slightly, but the fibroin sponge showed no deformation after autoclaving. Therefore, the fibroin sponge was sterilized using an autoclave. For 3 weeks, MC3T3 cells proliferated in the sterilized fibroin sponge. The fibroin sponge formed by this new process is applicable as a tissue-engineering scaffold because it is formed from biocompatible pure silk fibroin and offers both porous structure and mechanical properties that are suitable for cell growth and handling.  相似文献   

2.
The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are recommended.  相似文献   

3.
The positive interaction of materials with tissues is an important step in regenerative medicine strategies. Hydrogels that are obtained from polysaccharides and proteins are expected to mimic the natural cartilage environment and thus provide an optimum milleu for tissue growth and regeneration. In this work, novel hydrogels composed of blends of chitosan and Bombyx mori silk fibroin were cross-linked with genipin (G) and were freeze dried to obtain chitosan/silk (CSG) sponges. CSG sponges possess stable and ordered structures because of protein conformational changes from alpha-helix/random-coil to beta-sheet structure, distinct surface morphologies, and pH/swelling dependence at pH 3, 7.4, and 9. We investigated the cytotoxicity of CSG sponge extracts by using L929 fibroblast-like cells. Furthermore, we cultured ATDC5 cells onto the sponges to evaluate the CSG sponges' potential in cartilage repair strategies. These novel sponges promoted adhesion, proliferation, and matrix production of chondrocyte-like cells. Sponges' intrinsic properties and biological results suggest that CSG sponges may be potential candidates for cartilage tissue engineering (TE) strategies.  相似文献   

4.
类人胶原蛋白-透明质酸血管支架的性能及生物相容性   总被引:4,自引:0,他引:4  
将类人胶原蛋白与透明质酸按不同比例复合,控制透明质酸的终浓度(W/V)分别为0、0.01%、0.05%、0.1%,用京尼平交联,采用真空冷冻干燥方法构建出血管支架材料。通过扫描电镜、XPS分析、拉力测试、压力爆破实验、细胞毒性实验、血管支架细胞种植实验及小鼠皮下植入等方法对其表面超微结构、表面元素组成、力学性能、细胞毒性等级、细胞相容性、组织相容性进行了研究。结果表明:当透明质酸的含量为0.05%时,类人胶原蛋白-透明质酸支架的孔径比较均匀,孔隙率达94.38%,应力为(1000.8±7.9)kPa,爆破压力为(1058.6±8.2)kPa,细胞毒性实验合格,同时具有良好的细胞相容性、组织相容性及降解性能。  相似文献   

5.
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.  相似文献   

6.
The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate–polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2CO3-degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.  相似文献   

7.
Decellularized arteries have been considered as promising scaffolds for small-diameter vascular substitutes. However, weakened mechanical properties, immunological rejection and rapid degradation after transplantation still exist after decellularization. Previous studies indicated that genipin cross-linking can solve these problems. Therefore, genipin was selected as the cross-linking agent for the pre-treatment of decellularized arteries in our study. Histological analysis, scanning electron microscopy, mechanical properties analysis and subcutaneous embedding experiment were adopted to investigate the efficiency of decellularization and the effect of genipin cross-linking on improving mechanical, structural and biological properties of decellularized arteries. Decellularization protocols based on three trypsin concentrations were used to prepare decellularized arteries, after decellularization, arteries were cross-linked with genipin. Results showed that 0.5% trypsin was the most efficient concentration to remove cellular components and preserve ECM. However, mechanical properties of 0.5% trypsin decellularized arteries weakened significantly, while genipin cross-linking improved mechanical properties of decellularized arteries to the same level as fresh arteries. After 4 weeks subcutaneous embedding, cross-linked arteries caused the mildest inflammatory response. In conclusion, genipin could be employed as an ideal cross-linking agent to strengthen mechanical properties, enhance the resistance to degradation and reduce the antigenicity of decellularized arteries for small-diameter blood vessel tissue engineering applications.  相似文献   

8.
目的:研究蚕丝蛋白-明胶三维材料支架对人永生化肝细胞系QZG贴附及增殖的影响。方法:采用四氮唑盐比色法(MTT)、细胞计数法检测QZG细胞在纯蚕丝生物材料上与在蚕丝蛋白-明胶复合材料上的增殖情况,用扫描电镜观察QZG细胞在两种三维生物材料上的贴附与增殖情况。结果:QZG细胞可以在蚕丝蛋白生物材料贴附及增殖,在引入明胶的蚕丝蛋白材料上细胞贴附更紧密,增殖更明显。结论:蚕丝蛋白与明胶复合材料支架具有良好的细胞贴附性能,通过改进在肝组织工程应用方面将具有一定应用前景。  相似文献   

9.
Carbon dioxide induced silk protein gelation for biomedical applications   总被引:1,自引:0,他引:1  
We present a novel method to fabricate silk fibroin hydrogels using high pressure carbon dioxide (CO(2)) as a volatile acid without the need for chemical cross-linking agents or surfactants. The simple and efficient recovery of CO(2) post processing results in a remarkably clean production method offering tremendous benefit toward materials processing for biomedical applications. Further, with this novel technique we reveal that silk protein gelation can be considerably expedited under high pressure CO(2) with the formation of extensive β-sheet structures and stable hydrogels at processing times less than 2 h. We report a significant influence of the high pressure CO(2) processing environment on silk hydrogel physical properties such as porosity, sample homogeneity, swelling behavior and compressive properties. Microstructural analysis revealed improved porosity and homogeneous composition among high pressure CO(2) specimens in comparison to the less porous and heterogeneous structures of the citric acid control gels. The swelling ratios of silk hydrogels prepared under high pressure CO(2) were significantly reduced compared to the citric acid control gels, which we attribute to enhanced physical cross-linking. Mechanical properties were found to increase significantly for the silk hydrogels prepared under high pressure CO(2), with a 2- and 3-fold increase in the compressive modulus of the 2 and 4 wt % silk hydrogels over the control gels, respectively. We adopted a semiempirical theoretical model to elucidate the mechanism of silk protein gelation demonstrated here. Mechanistically, the rate of silk protein gelation is believed to be a function of the kinetics of solution acidification from absorbed CO(2) and potentially accelerated by high pressure effects. The attractive features of the method described here include the acceleration of stable silk hydrogel formation, free of residual mineral acids or chemical cross-linkers, reducing processing complexity, and avoiding adverse biological responses, while providing direct manipulation of hydrogel physical properties for tailoring toward specific biomedical applications.  相似文献   

10.
In tissue engineering, chemical crosslinking is widely used for conjugating two or more biomaterials to mainly control biodegradability and strength. For example, Thai silk fibroin/gelatin scaffold will offer mechanical strength from Thai silk fibroin and cell attraction from gelatin. However, chemical crosslinking requires crosslinking agent which could potentially pose negative impact from remaining trace amount of chemicals especially in medical application. Here we present an alternative approach to chemical crosslinking—a balance electrostatic blending approach. In this approach, two opposite charge biomaterials were selected for blending, with different ratios. Both materials were bound together with electrostatic force. The maximum binding was achieved when mixture electric potential approaches zero. In this work, we compared this approach with traditionally chemical crosslinking in terms of physical appearance, binding effectiveness, mechanical strength (in dry/wet conditions), in vitro biodegradation, and cell proliferation. We found that 50/50 weight ratio of Thai silk fibroin/gelatin scaffold had almost comparable properties to chemical crosslinked scaffold. It has similar appearance, binding effectiveness, and affinity for cell proliferation. For mechanical properties, even this approach yields lower dry compressive modulus compared with chemical crosslinking. But in wet condition, the compressive modulus from both methods is similar. However, the biodegradation time of non-crosslinked scaffolds is slightly faster than that of chemical crosslinked ones. These results demonstrate that a balance electrostatic approach is an alternative approach to chemical crosslinking when there is a concern of remaining trace amount of crosslinking agent in medical application.  相似文献   

11.
Tissue engineering provides a new strategy for repairing damaged cartilage. Surface and mechanical properties of scaffolds play important roles in inducing cell growth.?Aim: The aim of this study was to fabricate and characterize PLGA and gelatin/hyaluronic acid-treated PLGA (PLGA-GH) sponge scaffolds for articular cartilage tissue engineering. Methods: The PLGA-GH scaffolds were cross-linked with gelatin and hyaluronic acid. Primary chondrocytes isolated from porcine articular cartilages were used to assess cell compatibility. The characteristic PLGA-GH scaffold was higher in water uptake ratio and degradation rate within 42 days than the PLGA scaffold. Results: The mean compressive moduli of PLGA and PLGA-GH scaffolds were 1.72±0.50 MPa and 1.86±0.90 MPa, respectively. The cell attachment ratio, proliferation, and extracellular matrix secretion on PLGA-GH scaffolds are superior to those of PLGA scaffolds. Conclusions: In our study, PLGA-GH scaffolds exhibited improvements in cell biocompatibility, cell proliferation, extracellular matrix synthesis, and appropriate mechanical and structural properties for potential engineering cartilage applications.  相似文献   

12.
Zhao C  Yao J  Masuda H  Kishore R  Asakura T 《Biopolymers》2003,69(2):253-259
High-resolution solution (13)C-NMR and CD studies of Bombyx mori silk fibroin revealed the presence of an ordered secondary structure 3(10)-helix, in hexafluoro-iso-propanol (HFIP). The solid-state structure of the silk fibroin film prepared by drying it gently from the HFIP solution still keep the structure, 3(10)-helix, which was studied with high-resolution solid state (13)C-NMR. The structural transition from the 3(10)-helix to silk II structure, heterogeneous structure including antiparallel beta-sheet, occurred during the artificial spinning from the HFIP solution. The wide-angle x-ray diffraction and differential scanning calorimetry thermograms of the artificial spinning fiber after postspinning treatments were observed together with the stress-strain curves. The results emphasize that the molecular structures, controlled morphology, and mechanical properties of the protein-based synthetic polymers can be modulated for enhancing biocompatibility.  相似文献   

13.
A tissue-engineered mesh fabricated with adipose-derived mesenchymal stem cells (AD-MSCs) cultured on a silk fibroin scaffold is evaluated for use in female pelvic reconstruction. Thirty-five female Sprague Dawley rats were divided into four groups. Group A (n?=?10) were implanted with polypropylene meshes, Group B (n?=?10) with silk fibroin scaffolds and Group C (n?=?10) with tissue-engineered meshes. Group D (n?=?5) acted as the tissue control. The tissue-engineered mesh was produced as follows. AD-MSCs were obtained from adipose tissue of rats designated to Group C. The cells were seeded onto a silk fibroin scaffold, cultured and then observed by scanning electron microscopy (SEM). Histological studies of these meshes were performed at 4 and 12 weeks after implantation and mechanical testing was carried out on all groups before implantation and at 12 weeks after implantation. AD-MSCs displayed fibroblast-like shapes and were able to differentiate into adipocytes or fibroblasts. SEM observation showed that AD-MSCs proliferated and secreted a matrix onto the silk fibroin scaffolds. After implantation of the scaffolds into rats, histological analysis revealed better organized newly formed tissue in Group C than in controls. Group C also had a similar failure force (2.67?±?0.15 vs 2.33?±?0.38 N) and a higher Young’s modulus (2.99?±?0.19 vs 1.68?±?0.20 MPa) than a normal vaginal wall, indicating the potential of this tissue-engineered approach. AD-MSCs were validated as seed cells for tissue engineering. The silk fibroin scaffold thus shows promise for application with AD-MSCs in the fabrication of tissue-engineered mesh with good biocompatibility and appropriate mechanical properties for pelvic floor reconstruction.  相似文献   

14.
In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze‐drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers.  相似文献   

15.
Zhang C  Song D  Lu Q  Hu X  Kaplan DL  Zhu H 《Biomacromolecules》2012,13(7):2148-2153
Although natural silk fibers have excellent strength and flexibility, the regenerated silk materials generally become brittle in the dry state. How to reconstruct the flexibility for silk fibroin has bewildered scientists for many years. In the present study, the flexible regenerated silk fibroin films were achieved by simulating the natural forming and spinning process. Silk fibroin films composed of silk I structure were first prepared by slow drying process. Then, the silk fibroin films were stretched in the wet state, following the structural transition from silk I to silk II. The difference between the flexible film and different brittle regenerated films was investigated to reveal the critical factors in regulating the flexibility of regenerated silk materials. Compared with the methanol-treated silk films, although having similar silk II structure and water content, the flexible silk films contained more bound water rather than free water, implying the great influence of bound water on the flexibility. Then, further studies revealed that the distribution of bound water was also a critical factor in improving silk flexibility in the dry state, which could be regulated by the nanoassembly of silk fibroin. Importantly, the results further elucidate the relation between mechanical properties and silk fibroin structures, pointing to a new mode of generating new types of silk materials with enhanced mechanical properties in the dry state, which would facilitate the fabrication and application of regenerated silk fibroin materials in different fields.  相似文献   

16.
The novel hybrid scaffolds fabricated from silk fibroin, gelatin, low deacetylation degree chitosan and hydroxyapatite were investigated for their in vitro biocompatibility and osteoconductivity to mouse pre-osteoblast cell line (MC3T3-E1) and rat bone marrow-derived stem cells (MSC). We found that gelatin-conjugated silk fibroin films and scaffolds dominantly promoted cell adhesion and proliferation. Film and scaffold prepared from gelatin-conjugated silk fibroin with hydroxyapatite grown crystals effectively enhanced osteogenic differentiation of both cell types, as evaluated by alkaline phosphatase activity and calcium content. However the blend of hydroxyapatite/low deacetylation degree chitosan hybrid materials did not support cell growth. Furthermore, the blended hydroxyapatite in the bulk scaffold was found to be less effective for osteogenic differentiation than the scaffold with hydroxyapatite grown crystals. The comparative study between MC3T3-E1 and MSC showed that both cell types had similar trend of proliferation and osteogenic differentiation on the same material. Also, higher proliferative rate of MC3T3-E1 than MSC was observed.  相似文献   

17.
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM.  相似文献   

18.
Mechanical properties of scaffolds seeded with mesenchymal stem cells used for cartilage repair seem to be one of the critical factors in possible joint resurfacing. In this paper, the effect of adding hyaluronic acid, hydroxyapatite nanoparticles or chitosan nanofibers into the cross-linked collagen I on the mechanical response of the lyophilized porous scaffold has been investigated in the dry state at 37 oC under tensile loading. Statistical significance of the results was evaluated using ANOVA analysis. The results showed that the addition of hyaluronic acid significantly (p<0.05) reduced the tensile elastic modulus and enhanced the strength and deformation to failure of the modified cross-linked collagen I under the used test conditions. On the other hand, addition of hydroxyapatite nanoparticles and chitosan nanofibers, respectively, increased the elastic modulus of the modified collagen ten-fold and four-fold, respectively. Hydroxyapatite caused significant reduction in the ultimate deformation at break while chitosan nanofibers enhanced the ultimate deformation under tensile loading substantially (p<0.05). The ultimate tensile deformation was significantly (p<0.05) increased by addition of the chitosan nanofibers. The enhanced elastic modulus of the scaffold was translated into enhanced resistance of the porous scaffolds against mechanical load compared to scaffolds based on cross-linked neat collagen or collagen with hyaluronic acid with similar porosity. It can be concluded that enhancing the rigidity of the compact scaffold material by adding rigid chitosan nanofibers can improve the resistance of the porous scaffolds against compressive loading, which can provide more structural protection to the seeded mesenchymal stem cells when the construct is implanted into a lesion. Moreover, scaffolds with chitosan nanofibers seemed to enhance cell growth compared to the neat collagen I when tested in vitro as well as the scaffold stability, extending its resorption to more than 10 weeks.  相似文献   

19.
The interest in silk fibroin morphology and structure have increased due to its attractiveness for bio-related applications. Silk fibers have been used as sutures for a long time in the surgical field, due to the biocompatibility of silk fibroin fibers with human living tissue. In addition, it has been demonstrated that silk can be used as a substrate for enzyme immobilization in biosensors. A more complete understanding of silk structure would provide the possibility to further exploit silk fibroin for a wide range of new uses, such as the production of oxygen-permeable membranes and biocompatible materials. Silk fibroin-based membranes could be utilized as soft tissue compatible polymers. Baculovirus-mediated transgenesis of the silkworm allows specific alterations in a target sequence. Homologous recombination of a foreign gene downstream from a powerful promoter, such as the fibroin promoter, would allow the constitutive production of a useful protein in the silkworm and the modification of the character of silk protein. A chimeric protein consisted of fibroin and green fluorescent protein was expressed under the control of fibroin in the posterior silk gland and the gene product was spun into the cocoon layer. This technique, gene targeting, will lead to the modification and enhancement of physicochemical properties of silk protein.  相似文献   

20.
The interest in silk fibroin morphology and structure have increased due to its attractiveness for bio-related applications. Silk fibers have been used as sutures for a long time in the surgical field, due to the biocompatibility of silk fibroin fibers with human living tissue. In addition, it has been demonstrated that silk can be used as a substrate for enzyme immobilization in biosensors. A more complete understanding of silk structure would provide the possibility to further exploit silk fibroin for a wide range of new uses, such as the production of oxygen-permeable membranes and biocompatible materials. Silk fibroin-based membranes could be utilized as soft tissue compatible polymers. Baculovirus-mediated transgenesis of the silkworm allows specific alterations in a target sequence. Homologous recombination of a foreign gene downstream from a powerful promoter, such as the fibroin promoter, would allow the constitutive production of a useful protein in the silkworm and the modification of the character of silk protein. A chimeric protein consisted of fibroin and green fluorescent protein was expressed under the control of fibroin in the posterior silk gland and the gene product was spun into the cocoon layer. This technique, gene targeting, will lead to the modification and enhancement of physicochemical properties of silk protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号