首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carroll TJ  Das A 《Organogenesis》2011,7(3):180-190
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.  相似文献   

2.
The regular array of distally pointing hairs on the mature Drosophila wing is evidence for the fine control of Planar Cell Polarity (PCP) during wing development. Normal wing PCP requires both the Frizzled (Fz) PCP pathway and the Fat/Dachsous (Ft/Ds) pathway, although the functional relationship between these pathways remains under debate. There is strong evidence that the Fz PCP pathway signals twice during wing development, and we have previously presented a Bidirectional-Biphasic Fz PCP signaling model which proposes that the Early and Late Fz PCP signals are in different directions and employ different isoforms of the Prickle protein. The goal of this study was to investigate the role of the Ft/Ds pathway in the context of our Fz PCP signaling model. Our results allow us to draw the following conclusions: (1) The Early Fz PCP signals are in opposing directions in the anterior and posterior wing and converge precisely at the site of the L3 wing vein. (2) Increased or decreased expression of Ft/Ds pathway genes can alter the direction of the Early Fz PCP signal without affecting the Late Fz PCP signal. (3) Lowfat, a Ft/Ds pathway regulator, is required for the normal orientation of the Early Fz PCP signal but not the Late Fz PCP signal. (4) At the time of the Early Fz PCP signal there are symmetric gradients of dachsous (ds) expression centered on the L3 wing vein, suggesting Ds activity gradients may orient the Fz signal. (5) Localized knockdown or over-expression of Ft/Ds pathway genes shows that boundaries/gradients of Ft/Ds pathway gene expression can redirect the Early Fz PCP signal specifically. (6) Altering the timing of ds knockdown during wing development can separate the role of the Ft/Ds pathway in wing morphogenesis from its role in Early Fz PCP signaling.  相似文献   

3.
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.  相似文献   

4.
In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue – the phenomenon known as planar cell polarity (PCP). In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.  相似文献   

5.
We report a new two-color fluorescent imaging system to visualize the mosaic adult photoreceptor neurons (PRs) in real-time. Using this method, we examined a collection of 434 mutants and identified genes required for PR survival, planar cell polarity (PCP), patterning and differentiation. We could track the progression of PR degeneration in living flies. By introducing the expression of p35, a caspase inhibitor, we found mutations that specifically activate caspase-dependent death. Moreover, we showed that grh is required in R3 for correct PCP establishment. The “Tomato/GFP-FLP/FRT” method allows high-throughput, rapid and precise identification of survival and developmental pathways in living adult PRs at single-cell resolution.  相似文献   

6.
Planar cell polarity (PCP) is observed in an array of developmental processes that involve collective cell movement and tissue organization, and its disruption can lead to severe developmental defects. Recent studies in flies and vertebrates have identified new functions for PCP as well as new signalling components, and have proposed new mechanistic models. However, despite this progress, the search to simplify principles of understanding continues and important mechanistic uncertainties still pose formidable challenges.  相似文献   

7.
Planar cell polarity: one or two pathways?   总被引:3,自引:0,他引:3  
In multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies - marked cells of different genotypes help us to understand how polarizing information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude that there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field.  相似文献   

8.
The related Wnt-Frizzled(Fz)/beta-catenin and Fz/planar cell polarity (PCP) pathways are essential for the regulation of numerous developmental processes and are deregulated in many human diseases. Both pathways require members of the Dishevelled (Dsh or Dvl) family of cytoplasmic factors for signal transduction downstream of the Fz receptors. Dsh family members have been studied extensively, but their activation and regulation remains largely unknown. In particular, very little is known about how Dsh differentially signals to the two pathways. Recent work in cell culture has suggested that phosphorylation of Dsh by Casein Kinase I epsilon (CKIepsilon) may act as a molecular "switch," promoting Wnt/beta-catenin while inhibiting Fz/PCP signaling. Here, we demonstrate in vivo in Drosophila through a series of loss-of-function and coexpression assays that CKIepsilon acts positively for signaling in both pathways, rather than as a switch. Our data suggest that the kinase activity of CKIepsilon is required for peak levels of Wnt/beta-catenin signaling. In contrast, CKIepsilon is a mandatory signaling factor in the Fz/PCP pathway, possibly through a kinase-independent mechanism. Furthermore, we have identified the primary kinase target residue of CKIepsilon on Dsh. Thus, our data suggest that CKIepsilon modulates Wnt/beta-catenin and Fz/PCP signaling pathways via kinase-dependent and -independent mechanisms.  相似文献   

9.
10.
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

11.
Wnts are essential for a wide range of developmental processes, including cell growth, division, and differentiation. Some of these processes signal via the planar cell polarity (PCP) pathway, which is a β-catenin-independent Wnt signaling pathway. Previous studies have shown that Ryk, a member of the receptor tyrosine kinase family, can bind to Wnts. Ryk is required for normal axon guidance and neuronal differentiation during development. Here, we demonstrate that mammalian Ryk interacts with the Wnt/PCP pathway. In vitro analysis showed that the Wnt inhibitory factor domain of Ryk was necessary for Wnt binding. Detailed analysis of two vertebrate model organisms showed Ryk phenotypes consistent with PCP signaling. In zebrafish, gene knockdown using morpholinos revealed a genetic interaction between Ryk and Wnt11 during the PCP pathway-regulated process of embryo convergent extension. Ryk-deficient mouse embryos displayed disrupted polarity of stereociliary hair cells in the cochlea, a characteristic of disturbed PCP signaling. This PCP defect was also observed in mouse embryos that were double heterozygotes for Ryk and Looptail (containing a mutation in the core Wnt/PCP pathway gene Vangl2) but not in either of the single heterozygotes, suggesting a genetic interaction between Ryk and Vangl2. Co-immunoprecipitation studies demonstrated that RYK and VANGL2 proteins form a complex, whereas RYK also activated RhoA, a downstream effector of PCP signaling. Overall, our data suggest an important role for Ryk in Wnt/planar cell polarity signaling during vertebrate development via the Vangl2 signaling pathway, as demonstrated in the mouse cochlea.  相似文献   

12.
Pentachlorophenol (PCP) is widely used to control termites and protect wood from fungal-rot and wood-boring insects, and is often detected in the aquatic environment. Few studies have evaluated PCP as an environmental endocrine disruptor. In the present work, Japanese medaka (Oryzias latipes) was exposed to PCP for 28 days (F0 generation) with subsequent measurements of vitellogenin (VTG), hepatic 7-ethoxyresorufin-O-deethylase (EROD), and reproductive endpoints. Plasma VTG significantly increased in male fish treated with PCP concentrations lower than 200 microg/l and decreased in male and female animals exposed to 200 microg/l. Hepatic EROD from female fish increased when PCP exposure concentrations exceeded 20 microg/l, but decreased in the 200 microg/l PCP treatment group. Fecundity and mean fertility of female medaka decreased significantly in the second and third week following exposure concentrations greater than 100 microg/l, and testis-ova of male medaka was observed at PCP concentrations greater than 50 microg/l. Histological lesions of liver and kidney occurred when exposure concentrations exceeded 50 microg/l. In F1 generations, the hatching rates and time to hatch of offspring were significantly affected in fish exposed to 200 microg/l. These results indicated that PCP exposure caused responses consistent with estrogen and aryl hydrocarbon receptor activation as well as reproductive impairment at environmentally relevant concentrations.  相似文献   

13.
Planar cell polarity (PCP) establishes polarity within an epithelial sheet. Defects in PCP are associated with developmental defects involving directional cell growth, including defects in kidney tubule elongation that lead to formation of kidney cysts. Given the strong association between kidney cyst formation and developmental biliary defects in patients and in animal models, we investigated the importance of PCP in biliary development. Here we report that in zebrafish, morpholino antisense oligonucleotide-mediated knockdown of PCP genes including prickle-1a (pk1a) led to developmental biliary abnormalities, as well as localization defects of the liver and other digestive organs. The defects in biliary development appear to be mediated via downstream PCP targets such as Rho kinase, Jun kinase (JNK), and both actin and microtubule components of the cytoskeleton. Knockdown of pk1a led to decreased expression of vhnf1, a homeodomain gene previously shown to be involved in biliary development and in kidney cyst formation; forced expression of vhnf1 mRNA led to rescue of the pk1a morphant phenotype. Our results demonstrate that PCP plays an important role in vertebrate biliary development, interacting with other factors known to be involved in biliary morphogenesis.  相似文献   

14.
15.
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.  相似文献   

16.
《Fly》2013,7(4):316-321
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.  相似文献   

17.
Despite its importance in development and physiology the planar cell polarity (PCP) pathway remains one of the most enigmatic signaling mechanisms. The notochord of the ascidian Ciona provides a unique model for investigating the PCP pathway. Interestingly, the notochord appears to be the only embryonic structure in Ciona activating the PCP pathway. Moreover, the Ciona notochord as a single-file array of forty polarized cells is a uniquely tractable system for the study of polarization dynamics and the transmission of the PCP pathway. Here, we test models for propagation of a polarizing signal, interrogating temporal, spatial and signaling requirements. A simple cell–cell relay cascading through the entire length of the notochord is not supported; instead a more complex mechanism is revealed, with interactions influencing polarity between neighboring cells, but not distant ones. Mechanisms coordinating notochord-wide polarity remain elusive, but appear to entrain general (i.e., global) polarity even while local interactions remain important. However, this global polarizer does not appear to act as a localized, spatially-restricted determinant. Coordination of polarity along the long axis of the notochord requires the PCP pathway, a role we demonstrate is temporally distinct from this pathway’s earlier role in convergent extension and intercalation. We also reveal polarity in the notochord to be dynamic: a cell’s polarity state can be changed and then restored, underscoring the Ciona notochord’s amenability for in vivo studies of PCP.  相似文献   

18.
The levels of peridinin-chlorophyll a -protein (PCP) mRNA, apoprotein and protein bound with peridinin (holoprotein) were measured as a function of circadian time in the dinoflagellate Gonyaulax polyedra to test involvement of this protein in the circadian oxygen evolution rhythm. This involvement was suggested by previous work showing that synthesis of PCP was rhythmic in vivo and in phase with the three-fold rhythm of oxygen evolution. However, Gonyaulax contains six PCP isoforms, only one of which was previously examined. In this report, we extend our analysis to two additional isoforms to encompass roughly 90% of the total cellular PCP. We confirm that synthesis of two additional PCP isoforms is rhythmic in vivo and show that this regulation appears to occur at a translational level as found for two other regulated proteins in this organism. However, PCP is unlikely to be implicated in the oxygen evolution rhythm since both PCP protein levels and the amount of chromophore (OD480) bound to protein (OD280) are constant over a circadian period.  相似文献   

19.
中枢苯环立啶受体介导的心血管效应   总被引:2,自引:1,他引:1  
有关中枢苯环立啶(PCP)受体的心血管效应,尚未见报道,本文采用大鼠侧脑室注射(icv)、脊髓蛛网膜下腔注射(ith)和皮下注射(sc)PCP受体的激动剂或拮抗剂,观察其对血压、心率和呼吸的影响,以了解脑和脊髓PCP受体的心血管效应,结果表明,icv250nmolPCP产生强烈的降压和快速持久的心率减慢作用。ithPCP立即产生强烈的降压和心率减慢作用。并呈量效关系。ithPCP受体篁 异性拮抗剂右吗喃15nmol,可拮抗PCP(150nmol)所产生的降奔驰主和心率减慢作用,ithPCP受体特异性拮抗剂右吗喃15nmol,可拮抗PCP(150nmol)所产生的降压和心率减慢作用,ithPCP受体激动剂TCP250nmol,立即产生强烈的降压和心率减慢作用。scPCP10ng/kg则产生升压作用,对心率没有影响,上述结果表明,中枢PCP受体具有心血管抑制效应。  相似文献   

20.
The water-soluble peridinin-chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC-MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Q(y) energy transfer efficiency is 95% in this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号