共查询到20条相似文献,搜索用时 15 毫秒
1.
3.
Tailor-made antibody therapeutics 总被引:1,自引:0,他引:1
Therapeutic antibodies represent one of the fastest growing areas of the pharmaceutical industry. There are currently 18 monoclonal antibodies in the market that have been approved by the FDA and over 150 in clinical developments. Driven by innovation and technological developments, scientists have gone beyond the traditional antibody molecules. Antibodies have been engineered in a variety of ways to meet the challenges posed by different biological settings. Described in this review is an abridged account of the different ways antibodies have been tailored to make them efficient drug molecules. 相似文献
4.
5.
《MABS-AUSTIN》2013,5(4):387-389
Probabilities of success (POS) play a key role in determining the distribution of resources by both investors and the pharmaceutical industry. Resources such as time, money and personnel are more likely to be directed toward programs in categories with acceptable rates of success. What is considered acceptable may, of course, vary between companies and other decision-makers. With the increased focus on development of antibody therapeutics, it is important for stakeholders to understand the utility, and limitations, of POS values such as cumulative approval success rates and clinical phase transition probabilities. A key point is that cumulative approval success rates are derived from data for only those candidates with known fates (either approved or terminated), but clinical phase transition probability calculations include data on the status of all candidates. 相似文献
6.
Jefferis R 《Archives of biochemistry and biophysics》2012,526(2):159-166
We live in a hostile environment but are protected by the innate and adaptive immune system. A major component of the latter is mediated by antibody molecules that bind to pathogens, with exquisite specificity, and the immune complex formed activates cellular mechanisms leading to the removal and destruction of the complex. Five classes of antibody are identified; however, the IgG class predominates in serum and a majority of monoclonal antibody (mAb) therapeutics are based on the IgG format. Selection within the antibody repertoire allows the generation of (mAb) having specificity for any selected target, including human antigens. This review focuses on the structure and function of the Fc region of IgG molecules that mediates biologic functions, within immune complexes, by interactions with cellular Fc receptors (FcγR) and/or the C1q component of complement. A property of IgG that is suited to its use as a therapeutic is the long catabolic half life of ~21days, mediated through the structurally distinct neonatal Fc receptor (FcRn). Our understanding of structure/function relationships is such that we can contemplate engineering the IgG-Fc to enhance or eliminate biologic activities to generate therapeutics considered optimal for a given disease indication. There are four subclasses of human IgG that exhibit high sequence homology but a unique profile of biologic activities. The FcγR and the C1q binding functions are dependent on glycosylation of the IgG-Fc. Normal human serum IgG is comprised of multiple glycoforms and biologic activities, other than catabolism, varies between glycoforms. 相似文献
7.
Jefferis R 《Biotechnology progress》2005,21(1):11-16
The adaptive immune system has the capacity to produce antibodies with a virtually infinite repertoire of specificities. Recombinant antibodies specific for human targets are established in the clinic as therapeutics and represent a major new class of drug. Therapeutic efficacy depends on the formation of complexes with target molecules and subsequent activation of downstream biologic effector mechanisms that result in elimination of the target. The activation of effector mechanisms is dependent on structural characteristics of the antibody molecule that result from posttranslational modifications, in particular, glycosylation. The production of therapeutic antibody with a consistent human glycoform profile has been and remains a considerable challenge to the biopharmaceutical industry. Recent research has shown that individual glycoforms of antibody may provide optimal efficacy for selected outcomes. Thus a further challenge will be the production of a second generation of antibody therapeutics customized for their clinical indication. 相似文献
8.
Carter PJ 《Nature reviews. Immunology》2006,6(5):343-357
Antibodies constitute the most rapidly growing class of human therapeutics and the second largest class of drugs after vaccines. The generation of potent antibody therapeutics, which I review here, is an iterative design process that involves the generation and optimization of antibodies to improve their clinical potential. 相似文献
9.
Gwendolyn M Wilmes Kimberly L Carey Stuart W Hicks Hugh H Russell Jesse A Stevenson Paulina Kocjan Stephen R Lutz Rachel S Quesenberry Sergey V Shulga-Morskoy Megan E Lewis Ethan Clark Violetta Medik Anthony B Cooper Elizabeth E Reczek 《MABS-AUSTIN》2014,6(4):957-967
Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures. 相似文献
10.
《MABS-AUSTIN》2013,5(3):403-412
This paper examines the development and termination of nebacumab (Centoxin®), a human IgM monoclonal antibody (mAb) drug frequently cited as one of the notable failures of the early biopharmaceutical industry. The non-approval of Centoxin in the United States in 1992 generated major concerns at the time about the future viability of any mAb therapeutics. For Centocor, the biotechnology company that developed Centoxin, the drug posed formidable challenges in terms of safety, clinical efficacy, patient selection, the overall economic costs of health care, as well as financial backing. Indeed, Centocor's development of the drug brought it to the brink of bankruptcy. This article shows how many of the experiences learned with Centoxin paved the way for the current successes in therapeutic mAb development. 相似文献
11.
12.
《MABS-AUSTIN》2013,5(4):957-967
Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures. 相似文献
13.
14.
15.
Ira Berkower 《Current opinion in biotechnology》1996,7(6):622-628
Recent experience has helped to clarify the best ways to use monoclonal antibodies to solve clinical problems. For example, imaging based on tumor antigens, rather than tumor size, will permit early detection of cancer and accurate staging. Blocking receptor—ligand interactions may permit therapeutic intervention in cell growth or function but activity may depend on the choice of an antiligand or antireceptor strategy. Humanized antibodies will achieve greater intensity and duration of therapy, while allowing repeat administration in chronic diseases. 相似文献
16.
Alexandre Ambrogelly Stephen Gozo Amit Katiyar Shara Dellatore Yune Kune Ram Bhat 《MABS-AUSTIN》2018,10(4):513-538
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle. 相似文献
17.
Sandrasagra A Leonard SA Tang L Teng K Li Y Ball HA Mannion JC Nyce JW 《Antisense & nucleic acid drug development》2002,12(3):177-181
Respirable antisense oligonucleotides (RASONs) represent a novel class of respiratory therapeutic molecules with the potential to specifically address the challenges posed by the successes of the Human Genome Program, namely, the need to rapidly identify the critical pulmonary disease-relevant drugable targets from the vast pool of 30,000-40,000 human genes and to discover and develop drugs that specifically attack these targets. We have shown that EPI-2010, a RASON targeting the adenosine A1 receptor, a G-protein coupled receptor that has been implicated in the regulation of three major determinants of asthma, can be delivered directly to the target disease tissue as an aerosol formulation. In vivo efficacy, absorption, distribution, metabolism, and excretion (ADME), and safety studies of inhaled EPI-2010 employing animal models of human asthma suggest that the RASON approach enables the specific delivery of efficacious, safe, and long-acting doses of phosphorothioate oligonucleotides to the respiratory tract. Moreover, these data indicate that RASONs truly have the potential to address the respiratory drug discovery bottleneck of the postgenomic era, that is, the ability to rapidly validate disease targets and develop pulmonary disease therapeutics for these validated targets. 相似文献
18.
19.
Stephan Blüml Kathleen McKeever Rachel Ettinger Josef Smolen Ronald Herbst 《Arthritis research & therapy》2013,15(Z1):S4
B lymphocytes are the source of humoral immunity and are thus a critical component of the adaptive immune system. However, B cells can also be pathogenic and the origin of disease. Deregulated B-cell function has been implicated in several autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B cells contribute to pathological immune responses through the secretion of cytokines, costimulation of T cells, antigen presentation, and the production of autoantibodies. DNA-and RNA-containing immune complexes can also induce the production of type I interferons, which further promotes the inflammatory response. B-cell depletion with the CD20 antibody rituximab has provided clinical proof of concept that targeting B cells and the humoral response can result in significant benefit to patients. Consequently, the interest in B-cell targeted therapies has greatly increased in recent years and a number of new biologics exploiting various mechanisms are now in clinical development. This review provides an overview on current developments in the area of B-cell targeted therapies by describing molecules and subpopulations that currently offer themselves as therapeutic targets, the different strategies to target B cells currently under investigation as well as an update on the status of novel therapeutics in clinical development. Emerging data from clinical trials are providing critical insight regarding the role of B cells and autoantibodies in various autoimmune conditions and will guide the development of more efficacious therapeutics and better patient selection. 相似文献
20.
Approval of an anti-CD20 chimeric monoclonal antibody, rituximab, has revolutionized cancer treatment and also validated CD20 targeting for providing benefit and improvement of overall response rate in B cell malignancies. Although many patients have benefited from the treatment of rituximab, there are still significant numbers of patients who are refractory or develop resistance to the treatment. Here we discuss pre-clinically well-defined potential mechanisms of action for rituximab and review the ways next generation anti-CD20 monoclonal antibodies can potentially exploit them to further enhance the treatment of B cell malignancies. Although the relative importance of each of these mechanism remains to be established in the clinic, well-designed clinical trials will help to define the efficacy and understanding of which effector activity of modified next generation anti-CD20 mAb will be important in the treatment of B-cell malignancies.Key words: CD20, NHL, CLL, monoclonal antibody, next generation anti-CD20 antibodies, ADCC, CDC, ADCP, PCD, rituximab 相似文献