首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An overview of the serpin superfamily   总被引:2,自引:1,他引:1  
Serpins are a broadly distributed family of protease inhibitors that use a conformational change to inhibit target enzymes. They are central in controlling many important proteolytic cascades, including the mammalian coagulation pathways. Serpins are conformationally labile and many of the disease-linked mutations of serpins result in misfolding or in pathogenic, inactive polymers.  相似文献   

2.
Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.  相似文献   

3.
Protease inhibitors of the serpin family are ubiquitous in the plant kingdom but relatively little is known about their biological functions in comparison with their counterparts in animals. X-ray crystal structures have provided crucial insights into animal serpin functions. The recently solved structure of AtSerpin1 from Arabidopsis thaliana, which has the highly conserved reactive center P2-P1' Leu-Arg-Xaa (Xaa = small residue), displays both conserved and plant-specific serpin features. Sequence homology suggests that AtSerpin1 belongs to serpin Clade B, composed of intracellular mammalian serpins, which is consistent with the lack of strong evidence for secretion of serpins from plant cells. The major in vivo target protease for AtSerpin1 is the papain-like cysteine RD21 protease, a match reminiscent of the inhibition of cathepsins K, L and S by the Clade-B mammalian serpin, SCCA-1 (SERPINB3). The function of AtSerpin1 and other serpins that contain P2-P1' Leu-Arg-Xaa (the 'LR' serpins) in plants remains unknown. However, based on its homology and interactive partners, AtSerpin1 and perhaps other serpins are likely to be involved in regulating programmed cell death or associated processes such as senescence. Abundant accumulation of serpins in seeds and their presence in phloem sap suggest additional functions in plant defense by irreversible inhibition of digestive proteases from pests or pathogens. Here we review the most recent findings in plant serpin biology, focusing on advances in describing the structure and inhibitory specificity of the LR serpins.  相似文献   

4.
Serpins are irreversible covalent 'suicide' protease inhibitors. In the past two years, important advances in the structural biology of serpins have been forthcoming with the crystal structures of a covalent complex between trypsin and alpha1-antitrypsin, and of a Michaelis encounter complex between trypsin S195A and serpin 1B from Manduca sexta. These structures have helped elucidate many aspects of the mechanism of action of serpins. Also, the crystal structure of the cysteine protease caspase-8 in complex with the inhibitor p35 has revealed a new family of suicide protease inhibitors.  相似文献   

5.
Serpins use an extraordinary mechanism of protease inhibition that depends on a rapid and marked conformational change and causes destruction of the covalently linked protease. Serpins thus provide stoichiometric, irreversible inhibition, and their dependence on conformational change is exploited for signalling and clearance. The regulatory advantages provided by structural mobility are best illustrated by the heparin activation mechanisms of the plasma serpins antithrombin and heparin cofactor II. This mechanistic complexity, however, renders serpins highly susceptible to disease-causing mutations. Recent crystal structures reveal the intricate conformational rearrangements involved in protease inhibition, activity modulation and the unique molecular pathology of the remarkable shape-shifting serpins.  相似文献   

6.
Members of the serine protease inhibitor (serpin) superfamily are found in all branches of life and play an important role in the regulation of enzymes involved in proteolytic cascades. Mutants of the serpins result in a delay in folding, with unstable intermediates being cleared by endoplasmic reticulum-associated degradation. The remaining protein is either fully folded and secreted or retained as ordered polymers within the endoplasmic reticulum of the cell of synthesis. This results in a group of diseases termed the serpinopathies, which are typified by mutations of α(1)-antitrypsin and neuroserpin in association with cirrhosis and the dementia familial encephalopathy with neuroserpin inclusion bodies, respectively. Current evidence strongly suggests that polymers of mutants of α(1)-antitrypsin and neuroserpin are linked by the sequential insertion of the reactive loop of one molecule into β-sheet A of another. The ordered structure of the polymers within the endoplasmic reticulum stimulates nuclear factor-kappa B by a pathway that is independent of the unfolded protein response. This chronic activation of nuclear factor-kappa B may contribute to the cell toxicity associated with mutations of the serpins. We review the pathobiology of the serpinopathies and the development of novel therapeutic strategies for treating the inclusions that cause disease. These include the use of small molecules to block polymerization, stimulation of autophagy to clear inclusions and stem cell technology to correct the underlying molecular defect.  相似文献   

7.
EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.  相似文献   

8.
Han J  Zhang H  Min G  Kemler D  Hashimoto C 《FEBS letters》2000,468(2-3):194-198
Serpins define a large protein family in which most members function as serine protease inhibitors. Here we report the results of a search for serpins in Drosophila melanogaster that are potentially required for oogenesis or embryogenesis. We cloned and sequenced ovarian cDNAs that encode six distinct proteins having extensive sequence similarity to mammalian serpins, including residues important in the serpin inhibition mechanism. One of these new serpins in recombinant form inactivates, and complexes with, trypsin-like proteases in vitro. To our knowledge, these results represent the first evidence for a serpin in Drosophila that functions as a serine protease inhibitor.  相似文献   

9.
Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.  相似文献   

10.
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.  相似文献   

11.
Serpins are the largest family of protease inhibitors and are fundamental for the control of proteolysis in multicellular eukaryotes. Most eukaryote serpins inhibit serine or cysteine proteases, however, noninhibitory members have been identified that perform diverse functions in processes such as hormone delivery and tumour metastasis. More recently inhibitory serpins have been identified in prokaryotes and unicellular eukaryotes, nevertheless, the precise molecular targets of these molecules remains to be identified. The serpin mechanism of protease inhibition is unusual and involves a major conformational rearrangement of the molecule concomitant with a distortion of the target protease. As a result of this requirement, serpins are susceptible to mutations that result in polymerization and conformational diseases such as the human serpinopathies. This review reports on recent major discoveries in the serpin field, based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).  相似文献   

12.
The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization.  相似文献   

13.
BACKGROUND: The reactive center loops (RCL) of serpins undergo large conformational changes triggered by the interaction with their target protease. Available crystallographic data suggest that the serpin RCL is polymorphic, but the relevance of the observed conformations to the competent active structure and the conformational changes that occur on binding target protease has remained obscure. New high-resolution data on an active serpin, serpin 1K from the moth hornworm Manduca sexta, provide insights into how active serpins are stabilized and how conformational changes are induced by protease binding. RESULTS: The 2.1 A structure shows that the RCL of serpin 1K, like that of active alpha1-antitrypsin, is canonical, complimentary and ready to bind to the target protease between P3 and P3 (where P refers to standard protease nomenclature),. In the hinge region (P17-P13), however, the RCL of serpin 1K, like ovalbumin and alpha1-antichymotrypsin, forms tight interactions that stabilize the five-stranded closed form of betasheet A. These interactions are not present in, and are not compatible with, the observed structure of active alpha1-antitrypsin. CONCLUSIONS: Serpin 1K may represent the best resting conformation for serpins - canonical near P1, but stabilized in the closed conformation of betasheet A. By comparison with other active serpins, especially alpha1-antitrypsin, a model is proposed in which interaction with the target protease near P1 leads to conformational changes in betasheet A of the serpin.  相似文献   

14.
The Toll signaling pathway, an essential innate immune response in invertebrates, is mediated via the serine protease cascade. Once activated, the serine proteases are irreversibly inactivated by serine protease inhibitors (serpins). Recently, we identified three serpin-serine protease pairs that are directly involved in the regulation of Toll signaling cascade in a large beetle, Tenebrio molitor. Of these, the serpin SPN48 was cleaved by its target serine protease, Spätzle-processing enzyme, at a noncanonical P1 residue of the serpin''s reactive center loop. To address this unique cleavage, we report the crystal structure of SPN48, revealing that SPN48 exhibits a native conformation of human antithrombin, where the reactive center loop is partially inserted into the center of the largest β-sheet of SPN48. The crystal structure also shows that SPN48 has a putative heparin-binding site that is distinct from those of the mammalian serpins. Ensuing biochemical studies demonstrate that heparin accelerates the inhibition of Spätzle-processing enzyme by a proximity effect in targeting the SPN48. Our finding provides the molecular mechanism of how serpins tightly regulate innate immune responses in invertebrates.  相似文献   

15.
Serine protease inhibitors (serpins) constitute a still expanding superfamily of structural similar proteins, which are localized extracellularly and intracellularly. Serpins play a central role in the regulation of a wide variety of (patho) physiological processes including coagulation, fibrinolysis, inflammation, development, tumor invasion, and apoptosis. Serpins have a unique mechanism of inhibition that involves a profound change in conformational state upon interaction with their protease. This conformational change enables the production of monoclonal antibodies specific for native, complexed, and inactivated serpins. Antibodies, and assays based on these antibodies, have been helpful in elucidating the (patho) physiological function of serpins in the last decade. Serpin-specific antibodies can be used for: (1) structure-function studies such as detection of conformational changes; (2) identification of target-proteases; (3) the detection and quantification of serpin and serpin-protease complexes in bodily fluids by immunoassays such as ELISA, RIA or FACS; (4) detection of serpins in tissues by immunohistochemistry; and (5) possible therapeutical interventions. This review summarizes the techniques we have used to obtain and screen antibodies against extra- and intracellular serpins, as well as the use of these antibodies for some of the above-mentioned purposes.  相似文献   

16.
Hook VY  Hwang SR 《Biological chemistry》2002,383(7-8):1067-1074
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.  相似文献   

17.
The interaction of duodenase, a new serine protease from a small group of Janus-faced proteases, with serpins, alpha 1-protease inhibitor (alpha 1-PI) and antichymotrypsin (ACT) from human blood serum, was studied. The stoichiometry of the inhibition process was found to be 1.2 and 1.3 mol/mol for alpha 1-PI and ACT, respectively. The presence of a stable enzyme-inhibitory complex duodenase-alpha 1-PI was confirmed by SDS-PAGE. No formation of the duodenase-ACT complex was demonstrated; instead, the band of the cleaved inhibitor was indicated upon the ACT hydrolysis. The suicide mechanism of the duodenase interaction with the human blood serpins was proved. The association rate constants (Ka, M-1 s-1) were 2.4 +/- 0.3 x 10(5) for alpha 1-PI and 3.0 +/- 0.4 x 10(5) for ACT. These results indicate the possibility of the regulation of duodenase activity by endogenous serpins. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.  相似文献   

18.
The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.  相似文献   

19.
The tissue type plasminogen activator (t-PA) is a serine protease that is involved in neuronal plasticity and cell death induced by excitotoxins and ischemia in the brain. t-PA activity in the central nervous system is regulated through the activation of serine protease inhibitors (serpins) such as the plasminogen activator inhibitor (PAI-1), the protease nexin-1 (PN-1), and neuroserpin (NSP). Recently we demonstrated in vitro that PAI-1 produced by astrocytes mediates the neuroprotective effect of the transforming growth factor-beta1 (TGF-beta1) in NMDA-induced neuronal cell death. To investigate whether serpins may be involved in neuronal cell death after cerebral ischemia, we determined, by using semiquantitative RT-PCR and in situ hybridization, that focal cerebral ischemia in mice induced a dramatic overexpression of PAI-1 without any effect on PN-1, NSP, or t-PA. Then we showed that although the expression of PAI-1 is restricted to astrocytes, PN-1, NSP, and t-PA are expressed in both neurons and astrocytes. Moreover, by using semiquantitative RT-PCR and Western blotting, we observed that only the expression of PAI-1 was modulated by TGF-beta1 treatment via a TGF-beta-inducible element contained in the PAI-1 promoter (CAGA box). Finally, we compared the specificity of TGF-beta1 action with other members of the TGF-beta family by using luciferase reporter genes. These data show that TGF-beta and activin were able to induce the overexpression of PAI-1 in astrocytes, but that bone morphogenetic proteins, glial cell line-derived neutrophic factor, and neurturin did not. These results provide new insights into the regulation of the serpins/t-PA axis and the mechanism by which TGF-beta may be neuroprotective.  相似文献   

20.
A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell. Accordingly, we present an investigation into the effect of a DNA-rich environment on the interaction between model serpins (MENT and SCCA-1), cysteine proteases (human cathepsin V and human cathepsin L), and cystatin A. DNA was indeed found to accelerate the rate at which MENT inhibited cathepsin V, a human orthologue of mammalian cathepsin L, up to 50-fold, but unexpectedly this effect was primarily effected via the protease and secondarily by the recruitment of the DNA as a "template" onto which cathepsin V and MENT are bound. Notably, the protease-mediated effect was found to correspond both with an altered substrate turnover and a conformational change within the protease. Consistent with this, cystatin inhibition, which relies on occlusion of the active site rather than the substrate-like behavior of serpins, was unaltered by DNA. This represents the first example of modulation of serpin inhibition of cysteine proteases by a co-factor and reveals a mechanism for differential regulation of cathepsin proteolytic activity in a DNA-rich environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号