首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golimumab     
Golimumab, a human anti-TNFα IgG1. monoclonal antibody, was approved in the US and Canada in April 2009 as a treatment for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and is undergoing regulatory review in the EU for these indications. The product was developed by Centocor and Janssen Pharmaceutical KK (Johnson & Johnson subsidiaries), in collaboration with Schering-Plough and Mitsubishi Tanabe Pharma. Golimumab faces numerous protein therapeutic competitors on the market, but, as the first patient-administered, once-monthly dosed anti-TNFα drug, it will likely be an attractive option for patients.Key words: golimumab, monoclonal antibody, immunomodulator, anti-TNF, arthritis  相似文献   

2.
Tumor necrosis factor α (TNFα) is a proinflammatory cytokine, and elevated levels of TNFα in serum are associated with various autoimmune diseases, including rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), psoriasis, and systemic lupus erythaematosus. TNFα performs its pleiotropic functions by binding to two structurally distinct transmembrane receptors, TNF receptor (TNFR) 1 and TNFR2. Antibody‐based therapeutic strategies that block excessive TNFα signaling have been shown to be effective in suppressing such harmful inflammatory conditions. Golimumab (Simponi®) is an FDA‐approved fully human monoclonal antibody targeting TNFα that has been widely used for the treatment of RA, AS, and CD. However, the structural basis underlying the inhibitory action of golimumab remains unclear. Here, we report the crystal structure of the Fv fragment of golimumab in complex with TNFα at a resolution of 2.73 Å. The resolved structure reveals that golimumab binds to a distinct epitope on TNFα that does not overlap with the binding residues of TNFR2. Golimumab exerts its inhibitory effect by preventing binding of TNFR1 and TNFR2 to TNFα by steric hindrance. Golimumab does not induce conformational changes in TNFα that could affect receptor binding. This mode of action is specific to golimumab among the four anti‐TNFα therapeutic antibodies currently approved for clinical use.  相似文献   

3.
《MABS-AUSTIN》2013,5(4):428-439
We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018). The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry. In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration. In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.  相似文献   

4.
《MABS-AUSTIN》2013,5(2):137-147
Certolizumab pegol (Cimzia®) is currently the only PEGylated anti-TNFα biologic approved for the treatment of rheumatoid arthritis and Crohn disease. The product, developed by UCB, is a humanized antigen-binding fragment (Fab′) of a monoclonal antibody that has been conjugated to polyethylene glycol. Certolizumab pegol was approved as a treatment for rheumatoid arthritis in the EU, US and Canada in 2009, and as a treatment for Crohn disease in Switzerland in 2007 and the US in 2008. Certolizumab pegol is entering into an increasingly competitive marketplace, especially in rheumatoid arthritis, but clinical data demonstrate benefits across a range of clinical, radiographic and patient reported outcomes.  相似文献   

5.
Therapeutic options for patients with more severe forms of spondyloarthritis (SpA) have been rather limited in recent decades. There is accumulating evidence that anti-tumor-necrosis-factor (anti-TNF) therapy is highly effective in SpA, especially in ankylosing spondylitis and psoriatic arthritis. The major anti-TNF-α agents currently available, infliximab (Remicade®) and etanercept (Enbrel®), are approved for the treatment of rheumatoid arthritis (RA) in many countries. In ankylosing spondylitis there is an unmet medical need, since there are almost no disease-modifying antirheumatic drugs (DMARDs) available for severely affected patients, especially those with spinal manifestations. Judging from recent data from more than 300 patients with SpA, anti-TNF therapy seems to be even more effective in SpA than in rheumatoid arthritis. However, it remains to be shown whether patients benefit from long-term treatment, whether radiological progression and ankylosis can be stopped and whether long-term biologic therapy is safe.  相似文献   

6.
We developed a technique for the measurement of surface plasmon resonance (SPR) to detect interactions of anti-tumor necrosis factor (TNF) agents with transmembrane TNF-α (mTNF-α) on living whole cells. The injection of a suspension of mTNF-α expressing Jurkat cells, used as an analyte, gave a clear binding response to anti-TNF agents, such as etanercept, infliximab and adalimumab, immobilized on sensorchip. The binding response of the analyte cells increased in a concentration-dependent manner and was competitively reduced by adding soluble TNF receptors to the analyte cell suspension. Treatment of analyte cells with free anti-TNF agent before injection reduced the binding response between the analyte cells and immobilized-etanercept on sensorchip, and the inhibitory effect of free anti-TNF agent was concordant with the affinity of anti-TNF agent for soluble TNF-α. These findings indicate that the SPR response arises from specific binding between anti-TNF agent and its target on cell membrane.  相似文献   

7.
We prepared and characterized golimumab, a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p = 0.018). The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2-fold; p = 0.017) and adalimumab (3.3-fold; p = 0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8°C vs. 69.5°C) as assessed by differential scanning calorimetry. In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration. In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.Key words: TNF, golimumab, neutralization, affinity, bioassay, arthritis, stability, solubility  相似文献   

8.
Postal M  Appenzeller S 《Cytokine》2011,56(3):537-543
The Tumor Necrosis Factor-alpha (TNF-α) is a pleiotropic cytokine that produces different stimuli in various physiological and pathological conditions. TNF-α contributes importantly to the development of T cells, B cells, and dendritic cells. However, TNF-α is also a potent inflammatory mediator and apoptosis inducer. The significance of the TNF-α involvement in the pathogenesis of systemic lupus erythematosus (SLE) remains controversial. From the genetic standpoint, a number of studies suggest that the TNF-α gene polymorphism is involved in the susceptibility of SLE. Moreover, there is a close association between the TNF-α gene expression and clinical manifestations. In addition, the increased serum level of TNF-α is observed in SLE patients and associated with disease activity and certain systemic manifestations. Treatment with anti-TNF agents is, however, controversial in SLE since induction of antinuclear antibodies, anti-dsDNA, anticardiolipin antibodies, and cases of drug-induced lupus have been observed in rheumatoid arthritis patients. In this context, this study reviewed the importance of TNF-α in the pathogenesis of SLE.  相似文献   

9.
Previously, we have reported the crystal structures of Fab fragment of Infliximab in complex with TNFα. The structurally identified epitope on TNFα revealed the mechanism of TNFα inhibition by partially overlapping with the TNFα-receptor interface and the possibility to optimize the binding affinity. In this study, we launched a screen of a phage display library to isolate novel anti-TNFα antibodies based on the infliximab epitope. To develop novel anti-TNFα antibodies, structural analysis, the phage display antibody isolation, step by step antibody optimization, CDR residues random mutagenesis, and binding affinity characterization were performed. One of the novel antibodies generated on the backbone of infliximab, Inf3D6, has the superior binding affinity to TNFα, thus, demonstrating the potential for structure guided optimization for improvement of existing antibody-based therapeutics.  相似文献   

10.
BACKGROUND: The tumor necrosis factor (TNF)-alpha plays a central role in rheumatoid arthritis (RA) and current biotherapies targeting TNF-alpha have a major impact on RA treatment. The long-term safety concerns associated with the repetitive TNF blockade prompt optimization of therapeutic anti-TNF approaches. Since we recently demonstrated that intra-articular gene transfer using a recombinant adeno-associated virus serotype 5 (rAAV5) efficiently transduces arthritic joints, we evaluate its effect on collagen-induced arthritis (CIA) when encoding TNF antagonists. METHODS: Recombinant AAV5 vectors encoding the human TNFRp55 extracellular domain fused to the Fc region of mice IgG1 (TR1) or a small molecular weight dimeric human TNFRp75 extracellular domain (TR2), under two different promoters, the CMV or a chimeric NF-kappaB-based promoter inducible by inflammation, were injected into mouse CIA joints. RESULTS: Best protection against arthritis was obtained with the rAAV5 encoding the TR1, as reflected by delayed disease onset, decreased incidence and severity of joint damage. This effect was associated with a transient expression of the anti-TNF agent when expressed under a NF-kappaB-responsive promoter, only detectable during disease flare, while the antagonist expression was rapidly increased and stable when expressed from a CMV promoter. Importantly, using the intra-articular administration of the rAAV5-NF-kappaB-TR1 vector, we observed a striking correlation between local TR1 expression and inflammation. CONCLUSIONS: These findings strongly support the feasibility of improving the safety of anti-TNF approaches for the treatment of arthritis by local rAAV5-mediated gene expression under an inflammation-responsive promoter, able to provide a limited, transient and therapeutically relevant expression of anti-TNF compounds.  相似文献   

11.
《Cytokine》2006,33(6):263-269
TNFα and IL-1 are the pivotal cytokines involved in rheumatoid arthritis (RA). More recently, the biological therapy targeting TNFα or IL-1 has been impressively effective for many RA patients, however, it remains insufficient in some patients. In the present study, we examined the combined effects of two agents against TNFα and IL-1 in human RA synovial membrane. Synovial explants (an ex vivo model) and synovial fibroblasts (an in vitro model) were prepared from 11 RA patients, and then anti-TNFα antibody (Anti-TNFα) and IL-1 receptor antagonist (IL-1Ra), either alone or in combination, were added to the synovial explants and fibroblasts. IL-6 and MMP-3 production were measured after incubation. As a result, their production significantly decreased by the combination of agents compared with the control group in both the synovial explants and fibroblasts. The efficacy of this combination was also observed for IL-6 production compared with each agent alone in the synovial explants, and for IL-6 and MMP-3 production compared with each agent alone in the synovial fibroblasts. Therefore, the combination of Anti-TNFα and IL-1Ra appears more beneficial in synovial membrane, particularly when compared with a single agent alone.  相似文献   

12.

Introduction  

Anti-TNF therapies represent a breakthrough in the treatment of severe psoriatic arthritis. However, little is known about long-term drug persistence with these treatments in patients with psoriatic arthritis in routine clinical practice. The aim of this study was to assess persistence with first-course and second-course treatment with anti-TNF agents in a prospective cohort of psoriatic arthritis patients and to identify factors associated with and reasons for drug discontinuation.  相似文献   

13.
Rheumatoid arthritis (RA) is a chronic debilitating disease of the joints. Both the innate and adaptive immune responses participate in the development and progression of RA. While several therapeutic reagents, such as TNF-α agonists, have been successfully developed for the clinical use in the treatment of RA, more than half of the patients do not respond to anti-TNF therapy. Therefore, new therapeutic reagents are needed. Recent studies have shown that sirtuin 1 (Sirt1), a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, is a critical negative regulator of both the innate and adaptive immune response in mice, and its altered functions are likely to be involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. This review highlights the role of Sirt1 in immune regulation and RA.  相似文献   

14.
Despite the clinical success of anti-tumor necrosis factor (TNF) therapies in the treatment of inflammatory conditions such as rheumatoid arthritis, Crohn disease and psoriasis, full control of the diseases only occurs in a subset of patients and there is a need for new therapeutics with improved efficacy against broader patient populations. One possible approach is to combine biological therapeutics, but both the cost of the therapeutics and the potential for additional toxicities needs to be considered. In addition to the various mediators of immune and inflammatory pathways, angiogenesis is reported to contribute substantially to the overall pathogenesis of inflammatory diseases. The combination of an anti-angiogenic agent with anti-TNF into one molecule could be more efficacious without the risk of severe immunosuppression. To evaluate this approach with our Zybody technology, we generated bispecific antibodies that contain an Ang2 targeting peptide genetically fused to the anti-TNF antibody adalimumab (Humira®). The bispecific molecules retain the binding and functional characteristics of the anti-TNF antibody, but with additional activity that neutralizes Ang2. In a TNF transgenic mouse model of arthritis, the bispecific anti-TNF-Ang2 molecules showed a dose-dependent reduction in both clinical symptoms and histological scores that were significantly better than that achieved by adalimumab alone.  相似文献   

15.
TNF-α (TNF), a pro-inflammatory cytokine is synthesized as a 26 kDa protein, anchors in the plasma membrane as transmembrane TNF (TmTNF), and is subjected to proteolysis by the TNF-α converting enzyme (TACE) to release the 15 kDa form of soluble TNF (sTNF). TmTNF and sTNF interact with 2 distinct receptors, TNF-R1 (p55) and TNF-R2 (p75), to mediate the multiple biologic effects of TNF described to date. Several anti-TNF biologics that bind to both forms of TNF and block their interactions with the TNF receptors are now approved for the treatment of a variety of immune-mediated diseases. Several reports suggest that binding of anti-TNFs to TmTNF delivers an outside-to-inside ‘reverse’ signal that may also contribute to the efficacy of anti-TNFs. Some patients, however, develop anti-TNF drug antibody responses (ADA or immunogenicity). Here, we demonstrate biochemically that TmTNF is transiently expressed on the surface of lipopolysaccharide-stimulated primary human monocytes, macrophages, and monocyte-derived dendritic cells (DCs) and expression of TmTNF on the cell surface is enhanced following treatment of cells with TAPI-2, a TACE inhibitor. Importantly, binding of anti-TNFs to TmTNF on DCs results in rapid internalization of the anti-TNF/TmTNF complex first into early endosomes and then lysosomes. The internalized anti-TNF is processed and anti-TNF peptides can be eluted from the surface of DCs. Finally, tetanus toxin peptides fused to anti-TNFs are presented by DCs to initiate T cell recall proliferation response. Collectively, these observations may provide new insights into understanding the biology of TmTNF, mode of action of anti-TNFs, biology of ADA response to anti-TNFs, and may help with the design of the next generation of anti-TNFs.  相似文献   

16.
BackgroundAs dysregulation of immunometabolism plays a key role in the immunological diseases, dyslipidemia frequently observed in rheumatoid arthritis (RA) patients (60%) is associated with the disease activity and has been considered as the potential target of anti-inflammatory strategy. However, targeting of metabolic events to develop novel anti-inflammatory therapeutics are far from clear as well as the mechanism of dyslipidemia in RA.PurposeTo explore the therapeutic potential and mechanisms of silybin again RA through the regulation of lipid metabolism.MethodsAdjuvant-induced arthritis (AIA) rat model was used to examine the effects of silybin on modulating dysregulated lipid metabolism and arthritis. Metabolomics, docking technology, and biochemical methods such as western blots, qRT-PCR, immunofluorescence staining were performed to understanding the underlying mechanisms. Moreover, knock-down of LXRα and LXRα agonist were used on LO2 cell lines to understand the action of silybin.ResultsWe are the first to demonstrate that silybin can ameliorate dyslipidemia and arthritis in AIA rats. Overexpression of LXRα and several key lipogenic enzymes regulated by LXRα, including lipoprotein lipase (LPL), cholesterol 7α and 27α hydroxylase (CYP7A, CYP27A), adipocyte fatty acid-binding protein (aP2/FABP4) and fatty acid translocase (CD36/FAT), were observed in AIA rats, which mostly accounted for dyslipidemia during arthritis development. Metabolomics, docking technology, and biochemical results indicated that anti-arthritis effects of silybin related to suppressing the up-regulated LXRα and abnormal lipid metabolism. Notably, activation of LXRα could potentiate cell inflammatory process induced by LPS through the regulation of NF-κB pathway, however, suppression of LXRα agonism by siRNA or silybin reduced the nuclear translocation of NF-κB as well as the induction of downstream cytokines, indicating LXRα agonism is the important factor for the arthritis development and could be a potential target.ConclusionThe up-regulation of LXRα can activate lipogenesis enzymes to worsen the inflammatory process in AIA rats as well as the development of dyslipidemia, therefore, rectifying lipid disorder via suppression of LXRα agonism pertains the capacity of drug target, which enables to discover and develop new drugs to treat rheumatoid arthritis with dyslipidaemia.  相似文献   

17.
The impact of diacerein, an effective cartilage targeted therapy that is used in patients with osteoarthritis, on the development and progression of chronic inflammatory arthritis was evaluated in a tumor necrosis factor (TNF) transgenic mouse model (Tg197). The response to diacerein at 2, 20, or 60 mg/kg daily, as well as the comparative effects of other antiarthritis drugs including dexamethasone (0.5 mg/kg daily), methotrexate (1 mg/kg three times weekly) and an anti-TNF agent (5 mg/kg weekly), were assessed in the Tg197 mice. Treatment was initiated before the onset of arthritis and was continued for 5 weeks. A significant improvement in clinical symptoms was found in all three diacerein treated groups in comparison with untreated groups. Confirming these data, semiquantitative histopathologic analysis of the hind paws revealed a significant reduction not only in cartilage destruction but also in the extent of synovitis and bone erosion in diacerein treated groups in comparison with untreated groups. At the most effective dose tested (2 mg/kg daily), diacerein inhibited the onset of arthritis in 28% and attenuated the progression of arthritis in 35% of the Tg197 mice. Comparative analyses showed diacerein to be more potent than methotrexate but not as effective as dexamethasone or anti-TNF agents in suppressing the progression of the TNF mediated arthritis in this model. These results indicate that diacerein has a disease modifying effect on the onset and progression of TNF driven chronic inflammatory arthritis, suggesting that the prophylactic or therapeutic potential of diacerein in patients with RA should be further examined.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):600-613
Despite the clinical success of anti-tumor necrosis factor (TNF) therapies in the treatment of inflammatory conditions such as rheumatoid arthritis, Crohn disease and psoriasis, full control of the diseases only occurs in a subset of patients and there is a need for new therapeutics with improved efficacy against broader patient populations. One possible approach is to combine biological therapeutics, but both the cost of the therapeutics and the potential for additional toxicities needs to be considered. In addition to the various mediators of immune and inflammatory pathways, angiogenesis is reported to contribute substantially to the overall pathogenesis of inflammatory diseases. The combination of an anti-angiogenic agent with anti-TNF into one molecule could be more efficacious without the risk of severe immunosuppression. To evaluate this approach with our Zybody technology, we generated bispecific antibodies that contain an Ang2 targeting peptide genetically fused to the anti-TNF antibody adalimumab (Humira®). The bispecific molecules retain the binding and functional characteristics of the anti-TNF antibody, but with additional activity that neutralizes Ang2. In a TNF transgenic mouse model of arthritis, the bispecific anti-TNF-Ang2 molecules showed a dose-dependent reduction in both clinical symptoms and histological scores that were significantly better than that achieved by adalimumab alone.  相似文献   

19.
Conformation restriction of linear N-alkylanilide MK2 inhibitors to their E-conformer was developed. This strategy enabled rapid advance in identifying a series of potent non-ATP competitive inhibitors that exhibited cell based activity in anti-TNFα assay.  相似文献   

20.
The impact of diacerein, an effective cartilage targeted therapy that is used in patients with osteoarthritis, on the development and progression of chronic inflammatory arthritis was evaluated in a tumor necrosis factor (TNF) transgenic mouse model (Tg197). The response to diacerein at 2, 20, or 60 mg/kg daily, as well as the comparative effects of other antiarthritis drugs including dexamethasone (0.5 mg/kg daily), methotrexate (1 mg/kg three times weekly) and an anti-TNF agent (5 mg/kg weekly), were assessed in the Tg197 mice. Treatment was initiated before the onset of arthritis and was continued for 5 weeks. A significant improvement in clinical symptoms was found in all three diacerein treated groups in comparison with untreated groups. Confirming these data, semiquantitative histopathologic analysis of the hind paws revealed a significant reduction not only in cartilage destruction but also in the extent of synovitis and bone erosion in diacerein treated groups in comparison with untreated groups. At the most effective dose tested (2 mg/kg daily), diacerein inhibited the onset of arthritis in 28% and attenuated the progression of arthritis in 35% of the Tg197 mice. Comparative analyses showed diacerein to be more potent than methotrexate but not as effective as dexamethasone or anti-TNF agents in suppressing the progression of the TNF mediated arthritis in this model. These results indicate that diacerein has a disease modifying effect on the onset and progression of TNF driven chronic inflammatory arthritis, suggesting that the prophylactic or therapeutic potential of diacerein in patients with RA should be further examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号