首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I am honored by the invitation to contribute to a volume in Neuroscience, dedicated to Professor Galoyan, whose accomplishments in the field of neuroscience and circulation have been unique. In his book, Dr. Galoyan has summarized the results of his discovery of cardioactive neurohormones. His discovery of biosynthesis of cytokines in the neurosecretory cells of the hypothalamus have opened a new page in immunology.  相似文献   

2.
Modern science has undoubtedly become one the principal engines of economic growth, even though the epistemological status of scientific knowledge has been continuously contested. Leaving the philosophical problem of knowledge aside, this paper examines how scientific discovery contributes to the production of wealth. The analysis focuses on a recent achievement at the crossroads of chemistry, immunology and biotechnology: antibody catalysis. For this purpose, we develop a model of entrepreneurial work to explain how the discovery of natural products and processes generates new economic opportunities. The proposed model is based on the assumption that scientists believe that the natural environment is a repository of ‘natural capital’. Natural capital includes goods that are not made by humans but can be used to produce other goods and services. The belief in natural capital induces scientists to search for and identify a natural property that, in the specific cultural context of their work, is recognized as a valuable resource. The selection of such a property forms the initial phase of the discovery process. Certain research methods are then deployed to create novel empirical conditions within which the selected property is transformed into a specific good. The discovery of natural capital thus comprises a historically accountable entrepreneurial endeavour.  相似文献   

3.
单克隆抗体因其与抗原结合具有高度特异性与强亲和力,已成为抗体药物研发的主要类型。但随着天然单克隆抗体的深入研究,它的诸多缺陷也浮出水面,如与抗原结合次数有限、带来非预期的抗体清除效应和抗原累积效应。人们不再局限于天然抗体的筛选,而是想通过改造提升抗体药物的药效。近年来,一类新型再循环抗体的问世,很好地解决了天然单克隆抗体发展的瓶颈。再循环抗体可以在胞外结合抗原,在细胞内与抗原解离,使抗体结合抗原次数最大化,减少抗原介导的抗体清除效应和抗体介导的抗原累积效应,并且再循环抗体可以通过进一步的Fc改造来加强与Fc受体的亲和力。文中综述了再循环抗体的研究进展,包括其特点、改造方法及展望。  相似文献   

4.
For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.  相似文献   

5.
Antibodies are essential in modern life sciences biotechnology. Their architecture and diversity allow for high specificity and affinity to a wide array of biochemicals. Combining monoclonal antibody (mAb) technology with recombinant DNA and protein expression links antibody genotype with phenotype. Yet, the ability to select and screen for high affinity binders from recombinantly-displayed, combinatorial libraries unleashes the true power of mAbs and a flood of clinical applications. The identification of novel antibodies can be accomplished by a myriad of in vitro display technologies from the proven (e.g. phage) to the emerging (e.g. mammalian cell and cell-free) based on affinity binding as well as function. Lead candidates can be further engineered for increased affinity and half-life, reduced immunogenicity and/or enhanced manufacturing, and storage capabilities. This review begins with antibody biology and how the structure and genetic machinery relate to function, diversity, and in vivo affinity maturation and follows with the general requirements of (therapeutic) antibody discovery and engineering with an emphasis on in vitro display technologies. Throughout, we highlight where antibody biology inspires technology development and where high-throughput, “big data” and in silico strategies are playing an increasing role. Antibodies dominate the growing class of targeted therapeutics, alone or as bioconjugates. However, their versatility extends to research, diagnostics, and beyond.  相似文献   

6.
7.
随着重组抗体药物展示出良好的治疗效果和市场效益,抗体药物的研发逐渐成为生物医药产业发展的主要方向。但是目前国内动物细胞表达水平普遍较低和发酵工艺落后的现状制约了我国抗体药物产业化的发展。主要综述了国际抗体药物产业的发展态势,重点比较二氢叶酸还原酶和谷氨酰胺合成酶表达体系、连续灌注和流加培养发酵模式的各自优势,结合我们抗体药物表达、发酵方面的经验,对当前我国抗体药物产业化发展策略进行了探讨,提出抗体药物产业化模式应根据企业对抗体产率、产能和市场经济学的多重考虑选择发酵工艺和发酵规模,应用谷氨酰胺合成酶/CHO-K1表达系统和连续灌注培养工艺可能更适应目前中国抗体产业化的需要。  相似文献   

8.
Hyunbo Shim 《BMB reports》2015,48(9):489-494
The in vitro antibody discovery technologies revolutionized the generation of target-specific antibodies that traditionally relied on the humoral response of immunized animals. An antibody library, a large collection of diverse, pre-constructed antibodies, can be rapidly screened using in vitro display technologies such as phage display. One of the keys to successful in vitro antibody discovery is the quality of the library diversity. Antibody diversity can be obtained either from natural B-cell sources or by the synthetic methods that combinatorially generate random nucleotide sequences. While the functionality of a natural antibody library depends largely upon the library size, various other factors can affect the quality of a synthetic antibody library, making the design and construction of synthetic antibody libraries complicated and challenging. In this review, we present various library designs and diversification methods for synthetic antibody library. From simple degenerate oligonucleotide synthesis to trinucleotide synthesis to physicochemically optimized library design, the synthetic approach is evolving beyond the simple emulation of natural antibodies, into a highly sophisticated method that is capable of producing high quality antibodies suitable for therapeutic, diagnostic, and other demanding applications. [BMB Reports 2015; 48(9): 489-494]  相似文献   

9.
The production of enzymes is a pursuit central to the modern biotechnology industry. Markets for traditional industrial enzymes continue to grow while the continued emphasis on biotechnological endeavours has generated demand for an ever increasing number of additional biocatalysts. The advent of genetic engineering has now facilitated the large-scale production of enzymes and other proteins which are produced naturally only in minute quantities. This development is particularly significant with regard to the production of enzymes and other proteins of therapeutic significance, which are now available in clinically useful quantities.

The level of downstream processing to which any enzyme is subjected is dependent upon its intended application. Industrial enzymes produced in bulk generally require little downstream processing, and hence are relatively crude preparations. Enzymes destined for therapeutic applications are subject to a far higher degree of downstream processing, often incorporating 3–4 chromatographic steps.

While enzymology is one of the longest established branches of the biochemical sciences, it continues to be an area of ongoing, active research. The continual discovery of new enzymes and a greater understanding of previously discovered enzymes and their functional significance suggests many novel applications for these catalytic activities. The intestinal production and utilization of enzymes will continue to be of central importance in the biotechnology industry.  相似文献   


10.
Receptor agonism remains poorly understood at the molecular and mechanistic level. In this study, we identified a fully human anti-Fas antibody that could efficiently trigger apoptosis and therefore function as a potent agonist. Protein engineering and crystallography were used to mechanistically understand the agonistic activity of the antibody. The crystal structure of the complex was determined at 1.9 Å resolution and provided insights into epitope recognition and comparisons with the natural ligand FasL (Fas ligand). When we affinity-matured the agonist antibody, we observed that, surprisingly, the higher-affinity antibodies demonstrated a significant reduction, rather than an increase, in agonist activity at the Fas receptor. We propose and experimentally demonstrate a model to explain this non-intuitive impact of affinity on agonist antibody signalling and explore the implications for the discovery of therapeutic agonists in general.  相似文献   

11.
Biomaterial and biopolymer research have significant impact on the development as well as application of biotechnology. Biotechnology Journal recently attended the "Nanomaterials for Biomedical Technologies 2012" conference. We were privileged to have the opportunity to ask Prof. Dr. J?rg Vienken, VP of BioSciences at Fresenius Medical Care, a few questions relating to medical devices, the importance of publishing for industry, and also his advice for young scientists/engineers looking for a career in industry.  相似文献   

12.
Natural products have immense therapeutic potential not only due to their structural variation and complexity but also due to their range of biological activities. Research based on natural products has led to the discovery of molecules with biomedical and pharmaceutical applications in different therapeutic areas like cancer, inflammation responses, diabetes, and infectious diseases. There are still several challenges to be overcome in natural product drug discovery research programs and the challenge of high throughput screening of natural substances is one of them. Bioactivity screening is an integral part of the drug discovery process and several in vitro and in vivo biological models are now available for this purpose. Among other well-reported biological models, the zebrafish (Danio rerio) is emerging as an important in vivo model for preclinical studies of synthetic molecules in different therapeutic areas. Zebrafish embryos have a short reproductive cycle, show ease of maintenance at high densities in the laboratory and administration of drugs is a straightforward procedure. The embryos are optically transparent, allowing for the visualization of drug effects on internal organs during the embryogenesis process. In this review, we illustrate the importance of using zebrafish as an important biological model in the discovery of bioactive drugs from natural sources.  相似文献   

13.
治疗性单克隆抗体研究进展   总被引:4,自引:0,他引:4  
杂交瘤技术使鼠源单克隆抗体(鼠单抗)被广泛用于人类疾病的诊断和研究,建立了治疗性抗体的第一个里程碑。但随后出现的人抗鼠抗体等副作用极大地限制了鼠单抗的临床应用。随着生物学技术的发展和抗体基因结构的阐明,应用DNA重组技术和抗体库技术对鼠单抗进行人源化改造,先后出现了嵌合抗体、改型抗体和全人抗体,同时也涌现了各种单抗衍生物,它们从不同角度克服了鼠单抗临床应用的不足,未人类疾病治疗带来新的曙光。我们就上述治疗性抗体人源化的研究进展做简要综述。  相似文献   

14.
The immunogenicity of a folded, all D -amino acid protein- rubredoxin, has been compared with that for the corresponding L -protein enantiomer. Following multiple administrations with alum adjuvant, the L -protein induced a strong, specific lgG antibody response, whereas the D -protein did not. This relative lack of responsiveness to the D -protein cannot be attributed to rapid excretion, since it is retained at least 4 times longer than the natural L -protein. These observations provide the first direct evidence that a folded D -amino acid protein has low immunogenicity and is long lived in vivo. Proteins with such properties may be useful as molecular platforms in a variety of chemical and pharmaco-logical applications. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The elucidation of the 3.2-gigabase human genome will have various impacts on drug discovery. The number of drug targets will increase by at least one order of magnitude and target validation will become a high-throughput process. To benefit from these opportunities, a theory-based integration of the vast amount of new biological data into models of biological systems is called for. The skills and knowledge required for genome-based drug discovery of the future go beyond the traditional competencies of the pharmaceutical industry. Cooperation with biotechnology firms and research institutions during drug discovery and development will become even more important.  相似文献   

16.
Antibody-based therapeutics are of great value for the treatment of human diseases. In addition to functional activity, affinity or physico-chemical properties, antibody specificity is considered to be one of the most crucial attributes for safety and efficacy. Consequently, appropriate studies are required before entering clinical trials.

High content protein arrays are widely applied to assess antibody specificity, but this commercial solution can only be applied to final therapeutic antibody candidates because such arrays are expensive and their throughput is limited. A flexible, high-throughput and economical assay that allows specificity testing of IgG or Fab molecules during early discovery is described here. The 384-well microtiter plate assay contains a comprehensive panel of 32 test proteins and uses electrochemiluminescence as readout.

The Protein Panel Profiling (3P) was used to analyze marketed therapeutic antibodies that all showed highly specific binding profiles. Subsequently, 3P was applied to antibody candidates from early discovery and the results compared well with those obtained with a commercially available high content protein chip. Our results suggest that 3P can be applied as an additional filter for lead selection, allowing the identification of favorable antibody candidates in early discovery and thereby increasing the speed and possibility of success in drug development.  相似文献   

17.
Human antibodies from transgenic animals   总被引:12,自引:0,他引:12  
Laboratory mice provide a ready source of diverse, high-affinity and high-specificity monoclonal antibodies (mAbs). However, development of rodent antibodies as therapeutic agents has been impaired by the inherent immunogenicity of these molecules. One technology that has been explored to generate low immunogenicity mAbs for in vivo therapy involves the use of transgenic mice expressing repertoires of human antibody gene sequences. This technology has now been exploited by over a dozen different pharmaceutical and biotechnology companies toward developing new therapeutic mAbs, and currently at least 33 different drugs in clinical testing--including several in pivotal trials--contain variable regions encoded by human sequences from transgenic mice. The emerging data from these trials provide an early glimpse of the safety and efficacy issues for these molecules. Nevertheless, actual product approval, the biggest challenge so far, is required to fully validate this technology as a drug discovery tool. In the future, it may be possible to extend this technology beyond rodents and use transgenic farm animals to directly generate and produce human sequence polyclonal sera.  相似文献   

18.
HER2-ECD (human epidermal growth factor receptor 2 – extracellular domain) is a prominent therapeutic target validated for treating HER2-positive breast and gastric cancer, but HER2-specific therapeutic options for treating advanced gastric cancer remain limited. We have developed antibody-drug conjugates (ADCs), comprising IgG1 linked via valine-citrulline to monomethyl auristatin E, with potential to treat HER2-positive gastric cancer in humans. The antibodies optimally selected from the ADC discovery platform, which was developed to discover antibody candidates suitable for immunoconjugates from synthetic antibody libraries designed using antibody-antigen interaction principles, were demonstrated to be superior immunoconjugate targeting modules in terms of efficacy and off-target toxicity. In comparison with the two control humanized antibodies (trastuzumab and H32) derived from murine antibody repertoires, the antibodies derived from the synthetic antibody libraries had enhanced receptor-mediated internalization rate, which could result in ADCs with optimal efficacies. Along with the ADCs, two other forms of immunoconjugates (scFv-PE38KDEL and IgG1-AL1-PE38KDEL) were used to test the antibodies for delivering cytotoxic payloads to xenograft tumor models in vivo and to cultured cells in vitro. The in vivo experiments with the three forms of immunoconjugates revealed minimal off-target toxicities of the selected antibodies from the synthetic antibody libraries; the off-target toxicities of the control antibodies could have resulted from the antibodies’ propensity to target the liver in the animal models. Our ADC discovery platform and the knowledge gained from our in vivo tests on xenograft models with the three forms of immunoconjugates could be useful to anyone developing optimal ADC cancer therapeutics.  相似文献   

19.
Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. “Antibodies to watch in 2017” and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.  相似文献   

20.
Over years of friendly meetings with Professor Aharon Katzir-Katchalsky, many topics of mutual interest were discussed. He was the ideal person to come to with a problem. After being subjected to his critical, analytic mind, most research problems seemed simple, more clearly defined and understandable. His broad biologic and scientific background grew from an apparently insatiable interest in all natural phenomena. He generously shared his knowledge and imparted his wisdom with a share of his own infectious excitement. He was quick to sense the significance of understanding of biological processes to their practical application. For this reason it seems appropriate to relate the progress made in the understanding of cell volume regulation, which had been discussed on several occasions with him, to its possible significance as a factor in disease processes.Dr. Frega is a Fellow of the National Kidney Foundation, Inc., 1972–73.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号