首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A new technology has been developed by immunologix that allows human antibodies to be quickly generated against virtually any antigen. Using a novel process, naïve human B cells are isolated from tonsil tissue and transformed with efficiency up to 85%, thus utilizing a large portion of the human VDJ/VJ repertoire. Through ex vivo stimulation, the B cells class switch and may undergo somatic hypermutation, thus producing a human “library” of different IgG antibodies that can then be screened against any antigen. Since diversity is generated ex vivo, sampling immunized or previously exposed individuals is not necessary. Cells producing the antibody of interest can be isolated through limiting dilution cloning and the human antibody from the cells can be tested for biological activity. No humanization is necessary because the antibodies are produced from human B cells. By eliminating immunization and humanization steps and screening a broadly diverse library, this platform should reduce both the cost and time involved in producing therapeutic monoclonal antibody candidates.Key words: human, antibody, monoclonal, novel platform, naïve, B cell, therapeutic  相似文献   

2.
The high specificity and affinity of monoclonal antibodies make them attractive as therapeutic agents. In general, the affinities of antibodies reported to be high affinity are in the high picomolar to low nanomolar range and have been affinity matured in vitro. It has been proposed that there is an in vivo affinity ceiling at 100 pM and that B cells producing antibodies with affinities for antigen above the estimated ceiling would have no selective advantage in antigen-induced affinity maturation during normal immune responses. Using a transgenic mouse producing fully human antibodies, we have routinely generated antibodies with sub-nanomolar affinities, have frequently rescued antibodies with less than 10 pM affinity, and now describe the existence of an in vivo generated anti-hIL-8 antibody with a sub-picomolar equilibrium dissociation constant. This confirms the prediction that antibodies with affinities beyond the proposed affinity ceiling can be generated in vivo. We also describe the technical challenges of determining such high affinities. To further understand the importance of affinity for therapy, we have constructed a mathematical model to predict the relationship between the affinity of an antibody and its in vivo potency using IL-8 as a model antigen.  相似文献   

3.
张勇 《生物学杂志》2002,19(5):35-37
通过基因工程可以大规模地制备能与人相容的单克隆抗体或片段。其中,噬菌体抗体抗库技术可以模拟体内抗体产生和成熟过程,不经细胞杂交,甚至不经免疫制备针对任何抗原的单克隆抗体。就基因工程抗体及噬菌抗体库技术的发展与应用作一概述 。  相似文献   

4.
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.Key words: human antibody library, phage display, oncofetal fibronectin, vascular tumor targeting, scFv antibody fragments, chelating recombinant antibody (CRAb)  相似文献   

5.
Mucin-1 has proven to be a suitable target for antibody-based diagnosis and therapy of certain tumours, but no appropriate human antibody or antibody fragment displaying slow dissociation rate kinetics against this target is available. Since a rapid dissociation character prevents an antibody fragment from remaining at the site of the antigen, this fact may prevent the successful application of a human mucin-1 specific antibody in diagnosis and therapy. We have now used iterative antibody libraries to evolve a human antibody fragment originally obtained from a na?ve antibody library. A strategy was devised whereby molecular variants displaying slow dissociation kinetics against the repetitive mucin-1 tumour-associated antigen can be selected in vitro. The evolved clones, that allowed for a reduced dissociation from the tumour antigen, carried substitutions in the outer parts of the binding site. This demonstrated the ability of this in vitro evolution technique to mimic the process whereby antibodies evolve in vivo. We have thus devised a strategy through which molecular variants displaying slow dissociation from a repetitive target like the mucin-1 tumour-associated antigen can be obtained in vitro. These or related molecules obtained by this approach will serve as a starting point for the development of fully human antibodies for use in mucin-1 specific tumour therapy of diagnosis.  相似文献   

6.
A method has been developed for the production of monoclonal mouse antibody responses in vitro against human cell surface antigens. Limiting numbers of immune spleen cells were transferred to syngeneic, irradiated recipients whose spleen fragments were then cultured in vitro and stimulated to produce antibody. The majority of the antibody from any one fragment culture was likely to be the product of a single donor B cell and thus monoclonal. Evidence for this included a linear relationship between donor cell transferred and spleen fragments producing antibody, extremely restricted isoelectric focusing patterns of the individual antibody products, and unique reactivity patterns of these antibodies against a panel of human lymphoid cells. Different human B leukemia cells were seen as immunogenically distinct by the mouse. By using the monoclonal mouse antibodies as probes, a fine analysis of cell surface antigens is jow possible.  相似文献   

7.
《MABS-AUSTIN》2013,5(3):264-272
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.  相似文献   

8.
Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo-isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.  相似文献   

9.
Moon SA  Ki MK  Lee S  Hong ML  Kim M  Kim S  Chung J  Rhee SG  Shim H 《Molecules and cells》2011,31(6):509-513
Target-specific antibodies can be rapidly enriched and identified from an antibody library using phage display. Large, naïve antibody libraries derived from synthetic or unimmunized sources can yield antibodies against virtually any antigen, whereas libraries from immunized sources tend to be smaller and are used exclusively against the antigen of immunization. In this study, 25 scFv libraries made from the spleens of immunized rabbits, each with a size ranging from 108 to higher than 109, were combined into a single large library with > 1010 individual clones. Panning of this combined library yielded target-specific rabbit scFv clones against many non-immunizing antigens, including proteins, peptides, and a small molecule. Notably, specific scFv clones against a rabbit self-antigen (rabbit serum albumin) and a phosphorylated protein (epidermal growth factor receptor pTyr1173) could be isolated from the library. These results suggest that the immune library contained a significant number of unimmunized clones and that a sufficiently large immune library can be utilized similarly to a naïe library, i.e., against various non-immunizing antigens to yield specific antibodies.  相似文献   

10.
Hybridomas producing human monoclonal antibodies against herpes simplex virus were generated by in vitro antigen stimulation before cell fusion. The cell fusion with tonsillar lymphocytes which were stimulated with antigen and/or pokeweed mitogen generated many hybridomas producing human IgG against the virus. A combination of antigen and pokeweed mitogen synergistically enhanced the generation of virus-specific hybridomas. Furthermore, the higher the antibody response of the tonsil, the more virus-specific hybridomas were generated by the cell fusion. These results suggest that cell fusion with in vitro stimulated lymphocytes can be applied to a variety of clinically relevant viruses.  相似文献   

11.
To produce human monoclonal antibodies in bacteria, a gene repertoire of IgM variable regions was isolated from human peripheral B lymphocytes by the polymerase chain reaction. Alternatively, synthetic antibody genes with random hypervariable regions are being generated that may provide libraries of even higher complexity. For the selection of specific monoclonal antibodies from these libraries, we have developed two E. coli vector systems that facilitate the surface display of an antibody physically linked to its own gene. The phagemid pSEX encodes a fusion protein of an antigen binding domain (Fv-antibody) with the docking protein (pIII) of filamentous phages. Specific antibody genes can therefore be enriched by antigen affinity chromatography. The plasmid pAP1 encodes a fusion protein of an Fv-antibody with a bacterial cell-wall protein. Bacteria carrying this plasmid express functional Fv-antibodies tightly bound to their surface. This should enable the selection of single cells with a fluorescence-assisted cell sorter (FACS) using labeled antigen or by adsorption to immobilized antigen. These vectors permit three major principles of the antibody response to be mimicked in E. coli: 1. Generation of a highly complex antibody repertoire; 2. Clonal selection procedures for library screening; and 3. The possibility of increasing a given affinity by repeated rounds of mutation and selection.  相似文献   

12.
T-cell co-stimulation delivered by the molecules B7-1 or B7-2 through CD28 has a positive effect on T-cell activation, whereas engagement of cytotoxic T-lymphocyte antigen 4 (CTLA-4) by these molecules inhibits activation. In vivo administration to mice of blocking monoclonal antibodies or Fab fragments against CTLA-4 can augment antigen-specific T-cell responses and, thus, therapy with monoclonal antibody against CTLA-4 has potential applications for tumor therapy and enhancement of vaccine immunization. The effects of B7-1 and B7-2 co-stimulation through CD28 depend on the strength of the signal delivered through the T-cell receptor (TCR) and the activation state of T cells during activation. Thus, we sought to determine whether these factors similarly influence the effect of B7-mediated signals delivered through CTLA-4 during T-cell activation. Using freshly isolated human T cells and Fab fragments of a monoclonal antibody against CTLA-4, we demonstrate here that CTLA-4 blockade can enhance or inhibit the clonal expansion of different T cells that respond to the same antigen, depending on both the T-cell activation state and the strength of the T-cell receptor signal delivered during T-cell stimulation. Thus, for whole T-cell populations, blocking a negative signal may paradoxically inhibit immune responses. These results provide a theoretical framework for clinical trials in which co-stimulatory signals are manipulated in an attempt to modulate the immune response in human disease.  相似文献   

13.
The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.3 × 107 combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a 1.5 × 109 combinatorial antibody complexity, was also generated in a rapid manner by combining 1.3 × 107 heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecule  相似文献   

14.
15.
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.  相似文献   

16.
Epidermal growth factor-like domain 7 (EGFL7) has been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. The advent of antibody display technology (phage, bacteria, and yeast) led to an enormous revival in the use of antibodies as diagnostic and therapeutic tools for fighting cancer. However, problems with protein folding, posttranslational modification, and codon usage still limit the number of improved antibodies that can be obtained. We describe here the isolation of an EGFL7-specific antibody from a mammalian cell-based full-length antibody display library generated from peripheral blood mononuclear cells of patients with hepatocellular carcinoma. Using a novel vector, contained glycosylphosphatidylinositol anchor and restriction enzyme sites NheI and ClaI, antibody libraries are displayed as whole IgG molecules on the cell surface and screened for specific antigen binding by a combination of magnetic beads and measured by cell ELISA. Anti-EGFL7 antibody was successfully isolated from the library. The mammalian cell-based full-length antibody display library is a great potential application for rapid identification and cloning of human mAbs of targeting hepatocellular carcinoma.  相似文献   

17.
Human antibodies were isolated by phage display from a naturally expressed human antibody repertoire. Antibody selection was carried out against the epithelial cell adhesion molecule (EpCAM) or 17-1A antigen, that in a clinical trial had been successfully used as a target for antibody therapy of minimal residual colorectal cancer. VH chains were selected from the human IgD repertoire expressed on naive B2 and autoreactive B1 lymphocytes. By guiding the selection through a murine template antibody, two EpCAM-specific human antibodies, HD69 and HD70, were obtained that closely resembled the murine therapeutic 17-1A antibody in their binding properties when expressed as complete huIgG1 molecules in CHO cells. However, both human antibodies recruited human cytotoxic effector cells far more efficiently than the murine 17-1A antibody used for clinical trials. Therefore, and in view of the long in vivo half-life of human IgG1 antibodies, HD69 and HD70 are regarded as highly promising third generation versions of the murine therapeutic antibody. Because of their origin from an evolutionary conserved germline VH repertoire, they are expected to exhibit minimal immunogenicity in patients. Received: 16 November 2000 / Accepted: 11 January 2001  相似文献   

18.
The rabbit antibody repertoire, which in the form of polyclonal antibodies has been used in diagnostic applications for decades, would be an attractive source for the generation of therapeutic human antibodies. The humanization of rabbit antibodies, however, has not been reported. Here we use phage display technology to select and humanize antibodies from rabbits that were immunized with human A33 antigen which is a target antigen for the immunotherapy of colon cancer. We first selected rabbit antibodies that bind to a cell surface epitope of human A33 antigen with an affinity in the 1 nm range. For rabbit antibody humanization, we then used a selection strategy that combines grafting of the complementarity determining regions with framework fine tuning. The resulting humanized antibodies were found to retain both high specificity and affinity for human A33 antigen.  相似文献   

19.
Microtubule-associated proteins (MAPs) that copurify with tubulin through multiple cycles of in vitro assembly have been implicated as regulatory factors and effectors in the in vivo activity of microtubules. As an approach to the analysis of the functions of these molecules, a collection of lymphocyte hybridoma monoclonal antibodies has been generated using MAPs from HeLa cell microtubule protein as antigen. Two of the hybridoma clones secrete IgGs that bind to distinct sites on what appears to be a 200,000-dalton polypeptide. Both immunoglobulin preparations stain interphase and mitotic apparatus microtubules in cultured human cells. One of the clones (N-3B4.3.10) secretes antibody that reacts only with cells of human origin, while antibody from the other hybridoma (N-2B5.11.2) cross-reacts with BSC and PtK1 cells, but not with 3T3 cells. In PtK1 cells the N-2B5 antigen is associated with the microtubules of the mitotic apparatus, but there is no staining of the interphase microtubule array; rather, the antibody stains an ill-defined juxtanuclear structure. Further, neither antibody stains vinblastine crystals in either human or marsupial cells at any stage of the cell cycle. N-2B5 antibody microinjected into living PtK1 cells binds to the mitotic spindle, but does not cause a rapid dissolution of either mitotic or interphase microtubule structures. When injected before the onset of anaphase, however, the N-2B5 antibody inhibits proper chromosome partition in mitotic PtK1 cells. N-2B5 antibody injected into interphase cells causes a redistribution of MAP antigen onto the microtubule network.  相似文献   

20.
The YOMICS? antibody library (http://www.yomics.com/) presented in this article is a new collection of 1559 murine polyclonal antibodies specific for 1287 distinct human proteins. This antibody library is designed to target marginally characterized membrane-associated and secreted proteins. It was generated against human proteins annotated as transmembrane or secreted in GenBank, EnsEMBL, Vega and Uniprot databases, described in no or very few dedicated PubMed-linked publications. The selected proteins/protein regions were expressed in E. coli, purified and used to raise antibodies in the mouse. The capability of YOMICS? antibodies to specifically recognize their target proteins either as recombinant form or as expressed in cells and tissues was confirmed through several experimental approaches, including Western blot, confocal microscopy and immunohistochemistry (IHC). Moreover, to show the applicability of the library for biomarker investigation by IHC, five antibodies against proteins either known to be expressed in some cancers or homologous to tumor-associated proteins were tested on tissue microarrays carrying tumor and normal tissues from breast, colon, lung, ovary and prostate. A consistent differential expression in cancer was observed. Our results indicate that the YOMICS? antibody library is a tool for systematic protein expression profile analysis that nicely complements the already available commercial antibody collections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号