首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe forms of dengue virus (DENV) infection frequently cause high case fatality rate. Currently, there is no effective vaccine against the infection. Clinical cases are given only palliative treatment as specific anti-DENV immunotherapy is not available and it is urgently required. In this study, human single-chain variable fragment (HuScFv) antibodies that bound specifically to the conserved non-structural protein-1 (NS1) of DENV and interfered with the virus replication cycle were produced by using phage display technology. Recombinant NS1 (rNS1) of DENV serotype 2 (DENV2) was used as antigen in phage bio-panning to select phage clones that displayed HuScFv from antibody phage display library. HuScFv from two phagemid transformed E. coli clones, i.e., clones 11 and 13, bound to the rNS1 as well as native NS1 in both secreted and intracellular forms. Culture fluids of the HuScFv11/HuScFv13 exposed DENV2 infected cells had significant reduction of the infectious viral particles, implying that the antibody fragments affected the virus morphogenesis or release. HuScFv epitope mapping by phage mimotope searching revealed that HuScFv11 bound to amino acids 1–14 of NS1, while the HuScFv13 bound to conformational epitope at the C-terminal portion of the NS1. Although the functions of the epitopes and the molecular mechanism of the HuScFv11 and HuScFv13 require further investigations, these small antibodies have high potential for development as anti-DENV biomolecules.  相似文献   

2.
3.
A combinatorial immune library of human single-chain antibodies (scAbs) was constructed using the genes coding for the variable domains of the heavy and light chains of human immunoglobulins. The genes were cloned from lymphocytes of four subjects vaccinated with the vaccinia virus (VACV). The library included 3 · 107 independent clones. After enrichment with clones producing scAbs against a recombinant analog of the variola virus envelope protein prA30L, the library was used to select a panel of scAbs binding both prA30L and VACV. All scAbs selected were tested for virus-neutralizing activity, and two scAbs proved to suppress VACV plaque formation in monolayers of Vero E6 cells. The specificity of antigen binding was verified by ELISA and Western blotting. The amino acid sequences of the virus-neutralizing scAbs were determined by sequencing their genes.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):1327-1339
A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.  相似文献   

5.
A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV''s NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.  相似文献   

6.
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in malignant tumors and plays important roles in tumor progression. Thus, L1CAM could serve as a therapeutic target and anti-L1CAM antibodies may have potential as anticancer agents. However, L1CAM is expressed in neural cells and the druggability of anti-L1AM antibody must be validated at the earliest stages of preclinical study. Here, we generated a human monoclonal antibody that is cross-reactive with mouse L1CAM and evaluated its pharmacokinetic properties and anti-tumor efficacy in rodent models. First, we selected an antibody (Ab4) that binds human and mouse L1CAM from the human naïve Fab library using phage display, then increased its affinity 45-fold through mutation of 3 residues in the complementarity-determining regions (CDRs) to generate Ab4M. Next, the affinity of Ab4M was increased 1.8-fold by yeast display of single-chain variable fragment containing randomly mutated light chain CDR3 to generate Ab417. The affinities (KD) of Ab417 for human and mouse L1CAM were 0.24 nM and 79.16 pM, respectively. Ab417 specifically bound the Ig5 domain of L1CAM and did not exhibit off-target activity, but bound to the peripheral nerves embedded in normal human tissues as expected in immunohistochemical analysis. In a pharmacokinetics study, the mean half-life of Ab417 was 114.49 h when a single dose (10 mg/kg) was intravenously injected into SD rats. Ab417 significantly inhibited tumor growth in a human cholangiocarcinoma xenograft nude mouse model and did not induce any adverse effect in in vivo studies. Thus, Ab417 may have potential as an anticancer agent.  相似文献   

7.
Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.  相似文献   

8.
9.
The aim of the present study was to discover distinct human MAbs to RV with high neutralizing potency and a broad neutralization spectrum. A phage display technology was used to produce human scFv to G5, a conserved linear neutralization epitope on Gp of RV. A phage display scFv library with 6 x 10(7) members was constructed and the phage-scFv with 'antigen-binding' activities were selected with synthetic peptide G5-24. The obtained scFv genes were cloned into pET22b(+)/BL21(DE3) and from this we prepared purified scFv fragments. The assay of the specificity characteristics and neutralization capacity showed that two distinct clones with new human immunoglobulin V genes can recognize G5 specifically as well as neutralize different RV strains. They have potential for inclusion in an antibodies combination aimed for use in rabies PEP.  相似文献   

10.
Many studies have shown that more than 50% of tumors express heat shock protein 70 kDa (Hsp70) at the plasma membrane surface while not seen in normal cells, therefore it is a promising therapeutic target in human cancers. Hence, we used phage display technology to produce a single-chain fragment variable (scFv) antibody against human Hsp70. For this, a target peptide from human Hsp70 was designed using bioinformatics studies and was chemically synthesized. Then, the selection was performed using four rounds of biopanning with a stepwise decreased amount of the target peptide. Fourteen positive scFv clones were selected using monoclonal phage enzyme-linked immunosorbent assay screening, which was further characterized by means of the polymerase chain reaction and DNA sequencing. Among them, the G6 clone was selected to express scFv into the Escherichia coli. Expression and purification of the scFv shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by Western blot analysis. In silico analysis confirmed specific binding of the scFv to Hsp70 in CDR regions. The specificity of the scFv measured by surface plasmon resonance and immunofluorescence of the A549 human lung carcinoma cell line confirmed the in vitro function of the scFv. Based upon these findings, we propose a novel anti-human Hsp70 scFv as potential immunotherapy agents that may be translated into preclinical/clinical applications.  相似文献   

11.
Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.  相似文献   

12.
《MABS-AUSTIN》2013,5(4):1084-1093
Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.  相似文献   

13.
登革病毒 (Dengue virus,DENV) 是全球传播最为广泛的虫媒病毒,由于缺乏快速鉴别感染病毒血清型的诊断技术,导致异型交叉感染引起重症登革出血热病例居高不下。为实现免疫学方法快速鉴别诊断不同血清型DENV感染,本研究采用哺乳动物细胞293T表达并纯化了4种DENV血清型NS1蛋白,免疫小鼠后通过杂交瘤技术制备了针对NS1蛋白的单克隆抗体。利用酶联免疫吸附方法 (Enzyme-linked immunosorbent assay,ELISA)、间接免疫荧光法 (Indirect immunofluorescence assay,IFA)、免疫斑点杂交试验 (Dot blotting) 以及蛋白质免疫印迹试验 (Western blotting) 确认所制备的单克隆抗体能够有效识别天然病毒NS1以及重组NS1蛋白。获得的单克隆抗体包含2株可识别1–4型DENV NS1蛋白的通用型抗体及3株分别针对DENV-1、DENV-2和DENV-4的血清型特异抗体。以所制备的DENV NS1抗体为基础,采用双抗体夹心ELISA可快速鉴别不同血清型DENV。DENV血清型特异单克隆抗体的制备和甄别DENV血清型ELISA方法的建立为快速鉴别感染DENV血清型的临床诊断奠定了基础。  相似文献   

14.
人源抗狂犬病毒单克隆抗体Fab段基因的获得和表达   总被引:2,自引:2,他引:2  
运用噬菌体表面呈现(phage display)技术获得了人源抗狂犬病毒糖蛋白基因工程单克隆抗体Fab段基因及其表达。从狂犬病毒PM株Vero细胞疫苗免疫的人抗凝血中分离获得外周淋巴细胞,提取细胞总RNA,通过RTPCR方法,用一组人IgG Fab基因4特异性引物,从合成的cDNA中扩增了一组轻链和重链Fab段基因,将轻链和重链Fab段基因,将轻链和重链先后克隆入噬菌体载体pComb3,成功地建立了抗狂犬病毒抗原的方法,对此抗体库进行富积筛选表达,成功地获得了抗狂犬病毒的人源单抗Fab段基因及其在大肠杆菌中的有效表达,对其中一株单抗G10进行了较为系统的分析,发现它与一株鼠源中和性狂犬病毒糖蛋白特异性单抗存在竞争,证实该单抗能识别狂犬病毒糖蛋白,其序列资料分析表明,该单抗为一株新的抗狂犬病毒人源基因工程抗体。  相似文献   

15.
For highly conserved mammalian protein, chicken is a suitable immune host to generate antibodies. Monoclonal antibodies have been successfully targeted with immunity checkpoint proteins as a means of cancer treatment; this treatment enhances tumor-specific immunity responses through immunoregulation. Studies have identified the importance of B7-H4 in immunoregulation and its use as a potential target for cancer treatment. High levels of B7-H4 expression are found in tumor tissues and are associated with adverse clinical and pathological characteristics. Using the phage display technique, this study isolated specific single-chain antibody fragments (scFvs) against B7-H4 from chickens. Our experiment proved that B7-H4 clearly induced the inhibition of T-cell activation. Therefore, use of anti-B7-H4 scFvs can effectively block the exhaustion of immunity cells and also stimulate and activate T-cells in peripheral blood mononuclear cells. Sequence analysis revealed that two isolated scFv S2 and S4 have the same VH complementarity-determining regions (CDRs) sequence. Molecule docking was employed to simulate the complex structures of scFv with B7-H4 to analyze the interaction. Our findings revealed that both scFvs employed CDR-H1 and CDR-H3 as main driving forces and had strong binding effects with the B7-H4. The affinity of scFv S2 was better because the CDR-L2 loop of the scFv S2 had three more hydrogen bond interactions with B7-H4. The results of this experiment suggest the usefulness of B7-H4 as a target for immunity checkpoints; the isolated B7-H4-specific chicken antibodies have the potential for use in future cancer immunotherapy applications.  相似文献   

16.
目的从人源化噬菌体抗体库(human single fold scFv libraries I+J)中筛选到能高亲和性、特异结合人禽流感病毒H5N1的单链抗体,为建立H5N1快速筛查试剂和人源化治疗单抗奠定基础。方法以H5N1病毒的血凝素(hemagglutitin,HA)蛋白和核蛋白(nucleoprotein,NP)为目的蛋白,对上述单抗噬菌体文库以亲和性为原理进行筛选,经过3轮筛选富集后,随机挑选了96个噬菌体克隆扩增培养,ELISA法挑选能特异性、高亲和性结合目的蛋白的噬菌体克隆,并换用HB2151宿主菌对阳性单链抗体克隆进行可溶性表达,ELISA法鉴定可溶性单链抗体的结合活性,PCR扩增阳性克隆的轻、重链基因片段,并对阳性单链抗体分子测序和序列分析。结果经过3轮筛选,分别从96个噬菌体克隆中挑选到了两株能特异结合NP蛋白、3株能特异结合HA蛋白的单链抗体,PCR扩增都得到了长为300、302和935bp的轻链、重链和轻链-连接片段-重链的基因片段,测序结果分析发现上述5条单链抗体片段在轻链的47、49、50、51、53、54、56、96、97、98和99位的氨基酸组成不同,而特异结合NP蛋白的单链在重链区域氨基酸组成完全相同,而特异结合HA蛋白的单链在重链的44、47、85、86、87、88和89位氨基酸组成不同。结论从噬菌体抗体库中筛选到的特异结合HA和NP蛋白的单链抗体片段,可为进一步研发H5N1快速筛选试剂和人源性治疗抗体奠定基础,也可为鉴定HA和NP蛋白中的抗原决定簇提供结构信息。  相似文献   

17.
mAbs T1 and T2 were established by immunizing PrP gene ablated mice with recombinant MoPrP of residues 121–231. Both mAbs were cross‐reactive with PrP from hamster, sheep, cattle and deer. A linear epitope of mAb T1 was identified at residues 137–143 of MoPrP and buried in PrPC expressed on the cell surface. mAb T1 showed no inhibitory effect on accumulation of PrPSc in cultured scrapie‐infected neuroblastoma (ScN2a) cells. In contrast, mAb T2 recognized a discontinuous epitope ranged on, or structured by, residues 132–217 and this epitope was exposed on the cell surface PrPC. mAb T2 showed an excellent inhibitory effect on PrPSc accumulation in vitro at a 50% inhibitory concentration of 0.02 μg/ml (0.14 nM). The scFv form of mAb T2 (scFv T2) was secreted in neuroblastoma (N2a58) cell cultures by transfection through eukaryotic secretion vector. Coculturing of ScN2a cells with scFv T2‐producing N2a58 cells induced a clear inhibitory effect on PrPSc accumulation, suggesting that scFv T2 could potentially be an immunotherapeutic tool for prion diseases by inhibition of PrPSc accumulation.  相似文献   

18.
Mucin-1 has proven to be a suitable target for antibody-based diagnosis and therapy of certain tumours, but no appropriate human antibody or antibody fragment displaying slow dissociation rate kinetics against this target is available. Since a rapid dissociation character prevents an antibody fragment from remaining at the site of the antigen, this fact may prevent the successful application of a human mucin-1 specific antibody in diagnosis and therapy. We have now used iterative antibody libraries to evolve a human antibody fragment originally obtained from a na?ve antibody library. A strategy was devised whereby molecular variants displaying slow dissociation kinetics against the repetitive mucin-1 tumour-associated antigen can be selected in vitro. The evolved clones, that allowed for a reduced dissociation from the tumour antigen, carried substitutions in the outer parts of the binding site. This demonstrated the ability of this in vitro evolution technique to mimic the process whereby antibodies evolve in vivo. We have thus devised a strategy through which molecular variants displaying slow dissociation from a repetitive target like the mucin-1 tumour-associated antigen can be obtained in vitro. These or related molecules obtained by this approach will serve as a starting point for the development of fully human antibodies for use in mucin-1 specific tumour therapy of diagnosis.  相似文献   

19.
运用噬菌体表面呈现技术,从禽流感病人恢复期血中获得淋巴细胞,通过基因工程手段,构建了人源抗H5NI禽流感病毒基因工程抗体文库.用纯化的人源H5N1禽流感病毒颗粒(A/Anhui/1/2005)及重组血凝素蛋白HA(A/Viet Nam/1203/2004)对Fab噬菌体抗体库进行富集筛选,成功地获得了抗禽流感病毒H5N1血凝素蛋白HA的人源单抗Fab段基因,并在大肠杆菌中获得有效表达.通过序列测定确定抗体轻重链型别,然后将阳性克隆的轻链和重链Fd段基因分别克隆入全抗体表达载体pAC-L-Fc后转染昆虫Sf9细胞,利用杆状病毒/昆虫细胞系统实现全抗体的分泌型表达.用ELISA、IFA和流式细胞术对所获人源单抗的功能特性进行鉴定.结果表明,我们获得了2株特异性针对H5N1禽流感病毒血凝素蛋白HA而与甲1型和甲3型人流感病毒无交叉反应的人源单抗(AVFlulgG01、AVFlulgG03).微量中和试验结果表明,除A/Guangdong/1/2006外,AVFlu-IgG01能够广泛地中和HA基因进化上属于Clade 2的中国南方、北方及中部地区的H5N1禽流感病毒分离株,同时还对属于Clade Ⅰ的越南H5N1分离株A/Viet Nam/1203/2004具有中和活性;AVFluIgG03虽然不能中和A/Viet Nam/1203/2004,但是对属于Clade 2的所有中国H5N1分离株均具有中和作用.人源中和性抗禽流感病毒H5N1基因工程全抗体的获得不仅为高致病性禽流感病毒H5N1的预防和治疗带来了希望,同时也为其疫苗研制提供了新的思路.  相似文献   

20.
制备抗登革病毒NS1蛋白单克隆抗体,建立检测NS1的ELISA方法。表达1~4型登革病毒NS1蛋白,将1型NS1蛋白纯化后免疫BALB/c小鼠,通过杂交瘤技术制备单克隆抗体。经ELISA、Western blotting、间接免疫荧光筛选和鉴定单克隆抗体,进行纯化和HRP标记。通过鉴定每两株单抗之间是否存在竞争作用,选择非竞争单抗组合并建立NS1捕获法ELISA。结果获得7株高滴度抗NS1单抗,捕获法ELISA可以检出10ng/mL NS1。原核表达登革病毒NS1蛋白制备的单抗可以和天然病毒抗原反应,NS1捕获法ELISA可以用于登革病毒感染检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号