首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism-based inactivation of the cytochrome P450 (P450) dependent monooxygenase system was studied in vivo in liver, lung, and kidney of untreated, phenobarbital-treated, and beta-naphthoflavone-treated guinea pigs 24 h after administration of 1-aminobenzotriazole (1-100 mg/kg, i.p.). Microsomal isozyme-selective or -specific monooxygenase activities were inhibited in a dose-dependent manner in all three organs. In the liver of untreated and phenobarbital-treated animals, 7-pentoxyresorufin O-depentylation (catalyzed primarily by P450 2Bx, an orthologue of rabbit P450 2B4/rat 2B1) was inhibited more than 7-ethoxyresorufin O-deethylation (P450 1A1), 4-aminobiphenyl N-hydroxylation (P450 1A2), erythromycin N-demethylation (P450 3A), or benzphetamine N-demethylation; in beta-naphthoflavone-treated animals, 4-amino-biphenyl N-hydroxylation activity was preferentially inhibited. In lung, the order of inactivation of monooxygenase activities was 4-aminobiphenyl N-hydroxylation (4Bx, the orthologue of rabbit 4B1) > 7-pentoxyresorufin O-depentylation activity (2Bx) > 7-ethoxyresorufin O-deethylation (1A1; for example 72, 53, and 29% inactivation, respectively, in phenobarbital-treated animals at 100 mg/kg). In all three tissues the loss in spectrally assayed P450 content corresponds quite well to the inhibition of monooxygenase activities. Thus, these studies show that 1-aminobenzotriazole is an effective inactivator of the pulmonary, hepatic, and renal P450 systems in guinea pigs following i.p. administration, and that P450 1A2 (liver) and P450 4Bx (lung), isozymes efficient for the oxidation of primary aromatic amines, are preferentially inactivated.  相似文献   

2.
3.
CYP4F1 was discovered by Chen and Hardwick (Arch. Biochem. Biophys. 300, 18-23, 1993) as a new CYP4 cytochrome P450 (P450) preferentially expressed in rat hepatomas. However, the catalytic function of this P450 remained poorly defined. We have purified recombinant CYP4F1 protein to a specific content of 12 nmol of P450/mg of protein from transfected yeast cells by chromatography of solubilized microsomes on an amino-n-hexyl Sepharose 4B column, followed by sequential HPLC on a DEAE column and two hydroxylapatite columns. The purified P450 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 53 kDa. The enzyme catalyzed the omega-hydroxylation of leukotriene B(4) with a K(m) of 134 microM and a V(max) of 6.5 nmol/min/nmol of P450 in the presence of rabbit hepatic NADPH-P450 reductase and cytochrome b(5). In addition, 6-trans-LTB(4), lipoxin A(4), prostaglandin A(1), and several hydroxyeicosatetraenoic acids (HETEs) were also omega-hydroxylated. Of several eicosanoids examined, 8-HETE was the most efficient substrate, with a K(m) of 18.6 microM and a V(max) of 15.8 nmol/min/nmol of P450. In contrast, no activity was detected toward lipoxin B(4), laurate, palmitate, arachidonate, and benzphetamine. The results suggest that CYP4F1 participates in the hepatic inactivation of several bioactive eicosanoids.  相似文献   

4.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

5.
The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent lung carcinogen in the A/J mouse, and is believed to be a causative agent for human lung cancer. NNK requires metabolic activation by alpha-hydroxylation to exert its carcinogenic potential. The human P450, 2A6 is a catalyst of this reaction. There are two closely related enzymes in the mouse, P450 2A4 and 2A5, which differ from each other by only 11 amino acids. In the present study these two mouse P450s were expressed in Spodoptera frugiperda (Sf9) cells using recombinant baculovirus. The catalysis of NNK metabolism by Sf9 microsomal fractions containing either P450 2A4 or 2A5 was determined. Both enzymes catalyzed the alpha-hydroxylation of NNK but with strikingly different efficiencies and specificities. P450 2A5 preferentially catalyzed NNK methyl hydroxylation, while P450 2A4 preferentially catalyzed methylene hydroxylation. The KM and Vmax for the former were 1.5 microM and 4.0 nmol/min/nmol P450, respectively, and for the latter 3.9 mM and 190 nmol/min/nmol P450. The mouse coumarin 7-hydroxylase, P450 2A5 is a significantly better catalyst of NNK alpha-hydroxylation than is the closely related human enzyme, P450 2A6.  相似文献   

6.
We previously reported the cloning of a human liver leukotriene B(4) (LTB(4)) omega-hydroxylase P450 designated CYP 4F2 [Kikuta et al. (1994) FEBS Lett. 348, 70-74]. However, the properties of CYP 4F2 remain poorly defined. The preparation solubilized using n-octyl-beta-D-glucopyranoside from microsomes of CYP 4F2-expressing yeast cells catalyzes v- hydroxylation of LTB(4), 6-trans-LTB(4), lipoxin A(4), 8-hydroxyeicosatetraenoate, 12-hydroxyeicosatetraenoate, and 12-hydroxystearate in the presence of rabbit liver NADPH-P450 reductase. In addition, the enzyme shows ethoxycoumarin O-deethylase and p-nitroanisole O-demethylase activities. The enzyme was purified to apparent electrophoretic homogeneity from yeast cells by sequential chromatography of solubilized microsomes through amino-n-hexyl-Sepharose 4B, DEAE-HPLC, and hydroxylapatite HPLC columns. The final preparation showed a specific content of 11.1 nmol of P450/mg of protein, with an apparent molecular mass of 56.3 kDa. CYP 4F2 was distinguished from the closely homologous CYP 4F3 (human neutrophil LTB(4) omega-hydroxylase) by its much higher K(m) for LTB(4), inability to omega-hydroxylate lipoxin B(4), and extreme instability.  相似文献   

7.
Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) inhibit the 0-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benz(a)pyrene-induced (BP) mice but do not inhibit the 0-deethylase activity in liver microsomes of BP-induced rats. Anti-P3-450 and anti-P-450c inhibit BP-hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes. In a reconstituted monooxygenase system isolated cytochrome P3-450 metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, did not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min/nmol cytochrome. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes. The interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c was accompanied by the appearance of a single band (cytochrome P3-450).  相似文献   

8.
在体外,利用野生型CYP450BM-3对瓦伦西亚烯进行催化,酶-底物复合物催化NADPH氧化的速率为31±1.0 nmol(nmol P450)-1min-1,但催化产物中没有检测到圆柚酮的生成。突变体R47L/Y51F/F87A与底物复合物催化NADPH氧化的速率高于野生型,为79±6.5 nmol(nmol P450)-1min-1,并在催化产物中检测到圆柚酮的生成,但其产物选择性较差,圆柚酮的含量仅占总产物的6.8%。与此同时,检测了另一个突变体A74G/F87V/L188Q对瓦伦西亚烯的催化效果,发现其与底物复合物对NADPH的氧化速率与突变体R47L/Y51F/F87A相当,但产物中圆柚酮的比率更高,达8.0%。  相似文献   

9.
P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61-74 (WGHQGMVNPTEEG) and 65-77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly variable CYP4F2 expression in liver (16.4+/-18.6pmol/mg microsomal protein; n=29) and kidney cortex (3.9+/-3.8 pmol/mg; n=10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r> or =0.63; p<0.05) with leukotriene B4 and arachidonate omega-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate omega-hydroxylase in human liver.  相似文献   

10.
We have previously described an enzyme-linked immunosorbent assay for the quantification of C-1 inactivator-kallikrein complexes in plasma (Lewin, M. F., Kaplan, A. P., and Harpel, P. C. (1983) J. Biol. Chem. 258, 6415-6421). We have now developed an immunoimmobilization-enzyme assay for alpha 2-macroglobulin-kallikrein complexes. In this assay these complexes are removed from plasma by immunoabsorption with the IgG fraction of rabbit anti-alpha 2-macroglobulin antiserum coupled to an agarose gel. The immobilized alpha 2-macroglobulin-kallikrein complex hydrolyzes the fluorogenic substrate D-Ser-Pro-Phe-Arg-7-amino-4-trifluoromethyl coumarin, and this activity is proportional to the concentration of complexes in the plasma. Using these assays we have studied the distribution of plasma kallikrein between its inhibitors under several different experimental conditions. When kallikrein is added to plasma, about 57% binds to C-1 inactivator and 43% to alpha 2-macroglobulin. When prekallikrein is activated endogenously in plasma by the addition of kaolin or Hageman factor fragment, approximately 84% of kallikrein is now bound to C-1 inactivator and 16% to alpha 2-macroglobulin. Temperature dramatically affects the distribution of kallikrein. The binding of kallikrein to alpha 2-macroglobulin in plasma is inversely related to temperature, whereas the binding to C-1 inactivator is directly related: 85% of the kallikrein is bound to alpha 2-macroglobulin at 4 degrees C, whereas at 37 degrees C, only 33% is bound. The total amount of kallikrein bound to the two inhibitors is similar at each temperature. These studies thus provide new insight concerning kallikrein formation and regulation in plasma.  相似文献   

11.
Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2   总被引:7,自引:0,他引:7  
Acetaminophen (APAP), a widely used over-the-counter analgesic, is known to cause hepatotoxicity when ingested in large quantities in both animals and man, especially when administered after chronic ethanol consumption. Hepatotoxicity stems from APAP activation by microsomal P450 monooxygenases to a reactive metabolite that binds to tissue macromolecules, thereby initiating cellular necrosis. Alcohol consumption also causes the induction of P450IIE1, a liver microsomal enzyme that in reconstitution studies has proven to be an effective catalyst of APAP oxidation. Thus, elevated microsomal P450IIE1 levels could explain not only the known increase in APAP bioactivating activity of liver microsomes after prolonged ethanol ingestion but also the enhanced susceptibility to APAP toxicity. We therefore examined the role of P450IIE1 in human liver microsomal APAP activation. Liver microsomes from seven non-alcoholic subjects were found to convert 1 mM APAP to a reactive intermediate (detected as an APAP-cysteine conjugate by high-pressure liquid chromatography) at a rate of 0.25 +/- 0.1 nmol conjugate formed/min/nmol microsomal P450 (mean +/- SD), whereas at 10 mM, this rate increased to 0.73 +/- 0.2 nmol product/min/nmol P450. In a reconstituted system, purified human liver P450IIE1 catalyzed APAP activation at rates threefold higher than those obtained with microsomes whereas two other human P450s, P450IIC8 and P450IIC9, exhibited negligible APAP-oxidizing activity. Monospecific antibodies (IgG) directed against human P450IIE1 inhibited APAP activation in each of the human samples, with anti-P450IIE1 IgG-mediated inhibition averaging 52% (range = 30-78%) of the rates determined in the presence of control IgG. The ability of anti-P450IIE1 IgG to inhibit only one-half of the total APAP activation by microsomes suggests, however, that other P450 isozymes besides P450IIE1 contribute to bioactivation of this compound in human liver. Of the other purified P450 isozymes examined, a beta-naphthoflavone (BNF)-inducible hamster liver P450 promoted APAP activation at rates even higher than those obtained with human P450IIE1. The extensive APAP-oxidizing capacity of this hamster P450, designated P450IA2 based upon its similarity to rat P450d and rabbit form 4 in terms of NH2-terminal amino acid sequence, spectral characteristics, immunochemical properties, and inducibility by BNF, agrees with previous reports concerning the APAP substrate specificity of the rat and rabbit P450IA2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Expression of the membrane-bound cytochrome P450 2B4 by the pLW01-P450 expression vector, which utilizes a T7 promoter, is markedly improved by employing Escherichia coli strain C41(DE3) [Miroux, B., and Walker, J. (1996) J. Mol. Biol 260, 289--298; Bridges, A., Gruenke, L., Chang, Y.-T., Vasker, I., Loew, G., and Waskell, L. (1998) J. Biol. Chem. 273, 17036--17049]. Using this expression system, it was possible to routinely obtain an average of 50--60 mg and as high as 100 mg of cyt P450 2B4 per liter of cell culture in volumes of 500 ml. An improved purification procedure for cyt P450 2B4 is also described which allows recovery of 30% of the expressed protein. It was possible in one step using B-PER reagent and polyoxyethylene-9-lauryl ether to both lyse the E. coli and solubilize the expressed cyt P450. Cyt P450 2B4 with a specific content of 17 nmol/mg protein and a single band on polyacrylamide gel electrophoresis was routinely isolated. The yield of cyt P450 from the improved purification procedure is twice that from the original procedure and the purity of the recovered protein typically has a specific content of 17 nmol cyt P450/mg of protein.  相似文献   

13.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

14.
J C Stevens  J Y Jaw  C T Peng  J Halpert 《Biochemistry》1991,30(15):3649-3685
A series of progesterone derivatives has been studied as potential inactivators of the bovine adrenocortical cytochromes P450, P450 17 alpha, and P450 C-21. Replacement of the 21-methyl group of progesterone with a difluoromethyl group resulted in a selective inactivator of P450 C-21 in a reconstituted system. The loss of 21-hydroxylase activity caused by this compound exhibits a number of characteristics of mechanism-based inactivation including NADPH dependence, pseudo-first-order kinetics, saturability, irreversibility, and protection by substrate. In addition to the difluoro compound, 21,21-dichloroprogesterone, the acetylenic compound pregn-4-en-20-yn-3-one, and the olefinic compound pregna-4,20-dien-3-one all inactivate P450 C-21. In contrast, the only compound to inactivate the rabbit adrenal progesterone 21-hydroxylase is 21,21-dichloroprogesterone. In binding studies, the 21,21-dihalo steroids produce a greater maximal type I spectral shift of P450 C-21 than the two 17 beta-unsaturated steroids. The dihalo compounds inactivate P450 C-21 by both heme destruction and protein modification as shown by significant decreases in residual 21-hydroxylase activity and spectrally detectable P450 after incubation with P450 C-21 in a reconstituted system. Liquid chromatographic and mass spectral analyses of the organic extracts from these incubations showed that 21-pregnenoic acid is a major metabolite of the dihalo compounds with a partition ratio of 5 nmol of acid produced/nmol of P450 C-21 inactivated. This supports the hypothesis that inactivation proceeds in part through an acyl halide intermediate. In contrast, the acetylenic compound pregn-4-en-20-yn-3-one inactivates P450 C-21 mainly by protein modification, producing an NADPH-dependent irreversible type I spectral shift. The stoichiometry of inactivation is approximately 1.5 nmol of compound bound/nmol of enzyme inactivated, indicating selective modification of the enzyme at or near the substrate binding site.  相似文献   

15.
From our topological arrangement model of prostaglandin I(2) synthase (PGIS) created by homology modeling and topology studies, we hypothesized that the helix F/G loop of PGIS contains a membrane contact region distinct from the N-terminal membrane anchor domain. To provide direct experimental data we have explored the relationship between the endoplasmic reticulum (ER) membrane and the PGIS F/G loop using a constrained synthetic peptide to mimic PGIS residues 208-230 cyclized on both ends through a disulfide bond with added Cys residues. The solution structure and the residues important for membrane contact of the constrained PGIS F/G loop peptide were investigated by high-resolution 1H two-dimensional nuclear magnetic resonance (2D NMR) experiments and a spin label incorporation technique. Through the combination of 2D NMR experiments in the presence of dodecylphosphocholine (DPC) micelles used to mimic the membrane environment, complete 1H NMR assignments of the F/G loop segment have been obtained and the solution structure of the peptide has been determined. The PGIS F/G loop segment shows a defined helix turn helix conformation, which is similar to the three-dimensional crystallography structure of P450BM3 in the corresponding region. The orientation and the residues contacted with the membrane of the PGIS F/G loop were evaluated from the effect of incorporation of a spin-labeled 12-doxylstearate into the DPC micelles with the peptide. Three residues in the peptide corresponding to the PGIS residues L217 (L11), L222 (L16), and V224 (V18) have been demonstrated to contact the DPC micelles, which implies that the residues are involved in contact with the ER membrane in the native membrane-bound PGIS. These results provided the first experimental evidence to localize the membrane contact residues in the F/G loop region of microsomal P450 and are valuable to further define and understand the membrane topology of PGIS and those of other microsomal P450s in the native membrane environment.  相似文献   

16.
H Aiba  J S Krakow 《Biochemistry》1980,19(9):1857-1861
Photoaffinity labeling of the cAMP receptor protein (CRP) of Escherichia coli with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has been demonstrated. 8-N3cAMP is able to support the binding of (3H)d(I-C)n by CRP, indicating that it is a functional cAMP analogue. Following irradiation at 254 nm, (32P)-8-N3cAMP is photocross-linked to CRP. Photolabeling of CRP by (32P)-8-N3cAMP is inhibited by cAMP but not by 5'AMP. The data indicate that (32P)-8-N3cAMP is covalently incorporated following binding at the cAMP binding site of CRP. The (32P)-8-N3cAMP-CRP digested with chymotrypsin was analyzed by NaDodSO4-polyacrylamide gel electrophoresis. Of the incorporated label, one-third remains associated with the amino-proximal alpha core region of CRP [Eilen, E., Pampeno, C., & Krakow, J.S. (1978) Biochemistry 17, 2469] which contains the cAMP binding domain; the remaining two-thirds of the label associated with the beta region are digested. Limited proteolysis of the (32P)-8-N3cAMP-CRP by chymotrypsin in the presence of NaDodSO4 shows the radioactivity to be distributed between the molecular weight 9500 (amino-proximal) and 13,000 (carboxyl-proximal) fragments produced. These results suggest that a part of the carboxyl-proximal region is folded over and close enough to the cAMP binding site to be cross-linked by the photoactivated (32P)-8-N3cAMP bound at the cAMP binding site.  相似文献   

17.
The prototypic members of the rat liver cytochrome P450IIB subfamily, P450b and P450e, differ by only 13 amino acids and yet purified P450b is considerably more active than P450e for all known substrates. A unique regioselectivity difference between cytochromes P450b and P450e for the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) and a genetic deficiency in P450e expression in the Marshall (M520/N) rat strain have been exploited to determine the microsomal contributions of the respective forms toward the metabolism of DMBA. The total contribution to metabolism by each isozyme has been assessed based on the sensitivity to rabbit anti-P450b/e IgG and comparison with microsomal P450b and P450e content as measured by Western blots. Liver microsomes from untreated M520/N rats do not express detectable levels of P450e but express P450b at a level that is 2-fold higher than that of P450e in liver microsomes from untreated F344 rats (50 pmol/mg). However, only 4% of the constitutive DMBA metabolizing activity of liver microsomes from the M520/N rat strain could be inhibited by anti-P450b/e IgG. A 30-fold induction of hepatic P450b by phenobarbital (PB) was also completely ineffective in increasing P450b-dependent DMBA metabolism. PB treatment had no appreciable effect on either the levels of expression of P450b protein or P450b-dependent DMBA metabolism, in M520/N lung and adrenal microsomes. In contrast, PB treatment of F344 rats considerably increased P450b/e-dependent metabolism by liver, lung, and adrenal microsomes. The regioselectivity of the anti-P450b/e-sensitive metabolism (predominantly 12-methyl hydroxylation), however, indicated a much greater contribution from P450e than P450b in every tissue examined despite a several fold higher expression of P450b than of P450e. P450b was expressed constitutively in lung microsomes from both strains but again failed to exhibit appreciable DMBA metabolizing activity. Based on these activities and microsomal P450b contents, P450b consistently exhibited turnover numbers (0.02-0.15 nmol/nmol P450b/min) that were at least 10-fold lower than those of pure P450b. In contrast, the calculated turnover numbers for microsomal P450e were consistently comparable to those of pure P450e (approximately 1 nmol/nmol P450e/min).  相似文献   

18.
The photoaffinity probes [gamma-32P]2-azidoATP (2-N3ATP) and [alpha-32P]8-azido-ATP (8-N3ATP) were used to investigate the binding of ATP to highly purified 2-5A synthetase. 2-N3ATP and 8-N3ATP are substrates for 2-5A synthetase [Suhadolnik, R.J., Karikó, K., Sobol, R.W., Jr., Li, S.W., Reichenbach, N.L., & Haley, B.E., preceding paper]. In this study we show that 2- and 8-N3ATP are competitive inhibitors of the enzymatic conversion of ATP to 2-5A. Ultraviolet irradiation results in the photoinsertion of 2-N3ATP and 8-N3ATP into the enzyme. The covalent photoinsertion of [alpha-32P]8-N3ATP into the 2-5A synthetase is proportional to the inactivation of the enzyme as UV irradiation is increased. Photolabeling of 2-5A synthetase is saturated at 1.5 mM 2-N3ATP and 2.0 mM 8-N3ATP. Computer analysis of the curvilinear Scatchard plots of the 2-5A synthetase suggests the presence of high-affinity and low-affinity binding sites that may correspond to the acceptor and the 2'-adenylation sites of the enzyme. The competition of nucleotides for the covalent photoinsertion of 8-N3ATP into the binding site(s) of the synthetase was as follows: ATP greater than 2'dATP = 3'dATP greater than CTP greater than ITP greater than AMP greater than NAD+ greater than UTP greater than UMP greater than CMP. Photoinsertion of 8-N3ATP into 2-5A synthetase increases with the addition of poly(rI).poly(rC).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Q S Li  J Ogawa  R D Schmid  S Shimizu 《FEBS letters》2001,508(2):249-252
We report here oxidation of propylbenzene and 3-chlorostyrene by wild-type cytochrome P450 BM-3 with high turnover (479 nmol 1-phenyl-1-propanol/min/nmol P450 and 300 nmol 3-chlorostyrene oxide/min/nmol P450). Furthermore, the residue size at position 87 of P450 BM-3 was found to play critical roles in determining stereoselectivity in oxidation of propylbenzene and 3-chlorostyrene. Replacement of Phe87 with Val, Ala and Gly resulted in decreases in optical purity of produced (R)-(+)-1-phenyl-1-propanol from 90.0 to 37.4, 26.0 and -15.6% e.e., respectively, and in increases in those of produced (R)-(+)-3-chlorostyrene oxide from -61.0 to -38.0, 67.0 and 94.6% e.e., respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号