首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The capacity of Escherichia coli poly(A) polymerase to adenylylate the 3'-OH residue of a variety of nucleosides, nucleoside 5'-phosphates and dinucleotides of the type nucleoside(5')oligophospho(5')nucleoside is described here for the first time. Using micromolar concentrations of [alpha-32P]ATP, the following nucleosides/nucleotides were found to be substrates of the reaction: guanosine, AMP, CMP, GMP, IMP, GDP, CTP, dGTP, GTP, XTP, adenosine(5')diphospho(5')adenosine (Ap2A), adenosine (5')triphospho(5')adenosine (Ap3A), adenosine(5')tetraphospho(5')adenosine (Ap4A), adenosine(5')pentaphospho(5')adenosine (Ap5A), guanosine(5')diphospho(5') guanosine (Gp2G), guanosine(5')triphospho(5')guanosine (Gp3G), guanosine(5')tetraphospho(5')guanosine (Gp4G), and guanosine(5')pentaphospho(5')guanosine (Gp5G). The synthesized products were analysed by TLC or HPLC and characterized by their UV spectra, and by treatment with alkaline phosphatase and snake venom phosphodiesterase. The presence of 1 mM GMP inhibited competitively the polyadenylylation of tRNA. We hypothesize that the type of methods used to measure polyadenylation of RNA is the reason why this novel property of E. coli poly(A) polymerase has not been observed previously.  相似文献   

2.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

3.
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.  相似文献   

4.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

6.
An enzyme hydrolyzing diadenosine 5',5"'P1, P4-tetraphosphate (Ap4A) to AMP and ATP has been purified to apparent homogeneity from mouse liver cell extracts. The isolation procedure comprised ammonium sulfate precipitation, chromatography on Sephadex G-75. DEAE-cellulose, blue Sepharose and AMP-Sepharose. The enzyme is a single polypeptide chain with a native Mr = 64,000 with a Km of 1.66 microM and Vmax of 1.25 mumol/min. AMP, ADP, Ap4, GTP, Gp4, Ap3A, Ap5A, Gp3G, and Gp5G are noncompetitive inhibitors of the Ap4A hydrolase activity, whereas Gp4G inhibits Ap4A hydrolysis competitively with a Ki of 6 microM. Theophylline, caffeine, and isobutylmethylxanthine do not or only slightly inhibit Ap4A hydrolysis. Mitogenic factors have no effect on the enzymatic activity of Ap4A hydrolase, excluding that a direct influence of internalized mitogens on Ap4A degradation could be responsible for mitogen-dependent fluctuation of intracellular Ap4A pool sizes.  相似文献   

7.
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).  相似文献   

8.
Cytidine and 4-N-acetylcytidine were compared as phosphate acceptors in dinucleoside monophosphate synthesis catalyzed by pancreatic ribonuclease with uridine-2',3'-cyclophosphate and cytidine-2',3'-cyclo phosphate as phosphate donors. Because of low solubility of 4-N-acetylcytidine in water, the synthesis was carried out in aqueus-organic media. The results obtained indicate that acetylation of the exoaminogroup of cytidine decreases its acceptor activity. For the first time uridilyl-(3'-5')-4-N-acetylcytidine and cytidilyl-(3'-5')-4-N-acetylcytidine are prepared enzymatically by pancreatic ribonuclease.  相似文献   

9.
L D Barnes  C A Culver 《Biochemistry》1982,21(24):6123-6128
A new enzyme that hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate has been purified by a factor of 250 from the acellular slime mold Physarum polycephalum. Activity was assayed radioisotopically with [3H]Ap4A. Isolation of the enzyme was facilitated by dye-ligand chromatography. The enzyme symmetrically hydrolyzes Ap4A to ADP and exhibits biphasic kinetics for the substrate with values for the apparent Km of 2.6 micro M and 37 micro M. The two values of Vmax differ by a factor of 10. Mg2+, Ca2+, and other divalent cations inhibit the activity with 40-80% inhibition occurring at 0.5 mM. Mg2+, at 0.5 mM, decreases both values of Vmax by 50%, decreases the low Km value by about 30%, and increases the high Km value by about 100%. (Ethylenedinitrilo)tetraacetic acid (EDTA) and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA), at 10 mM, inhibit the activity by 50%. ADP, ATP, Ap4, and Gp4 are equipotent inhibitors with 50% inhibition occurring at 30 micro M. AMP is a relatively weak inhibitor. The molecular weight of the enzyme is 26000 on the basis of elution of activity from a calibrated Sephadex G-75 column.  相似文献   

10.
A new procedure was described for assay of diadenosine tetraphosphate (Ap4A) hydrolases based on boronate chromatography. Potential reaction products, AMP, ADP, and ATP, of the hydrolysis of Ap4A were separated from residual substrate by chromatography on a boronate-derivatized cation-exchange resin, Bio-Rex 70. Separation was achieved by changing the concentrations of ethanol and ammonium acetate in the elution buffers. Picomole masses of products were detectable, blank dpm values were less than 0.5% of the total dpm, and auxiliary enzymes were not required. The procedure was specifically described for Ap4A pyrophosphohydrolase from Physarum polycephalum. The assay is generally applicable for dinucleoside polyphosphate hydrolases which hydrolyze other substrates such as Ap3A, Ap5A, Ap6A, and Gp4G. Dinucleotide polyphosphates are readily purified by chromatography on this boronate resin in a volatile buffer. Tes, Tricine, and Tris buffers significantly interfered with the chromatography of ATP.  相似文献   

11.
The P1P4-bis(5'-nucleosidyl) tetraphosphate asymmetrical-pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia has been purified over 11,000-fold to homogeneity. Anion-exchange chromatography resolves two major species with very similar properties. The enzyme is a single polypeptide of Mr 17,600 and is maximally active at pH 8.4 and 2 mM-Mg2+. It is inhibited by Ca2+ (IC50 = 0.9 mM with 2 mM-Mg2+) but not by Zn2+ ions. It preferentially hydrolyses P1P4-bis(5'-nucleosidyl) tetraphosphates, e.g. P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) (kcat. = 12.7 s-1; Km = 33 microM) and P1P4-bis(5'-guanosyl) tetraphosphate (Gp4G) (kcat. = 6.2 s-1; Km = 5 microM). With adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) as substrate, there is a 4.5-fold preference for AMP and GTP as products and biphasic reaction kinetics are observed giving Km values of 4.7 microM and 34 microM, and corresponding rate constants of 6.5 s-1 and 11.9 s-1. The net rate constant for Ap4G hydrolysis is 7.6 s-1. The enzyme will also hydrolyse nucleotides with more than four phosphate groups, e.g. Ap5G, Ap6A and Gp5G are hydrolysed at 25%, 18% and 10% of the rate of Ap4A respectively. An NTP is always one of the products. Ap2A and Gp2G are not hydrolysed, while Ap3A and Gp3G are very poor substrates. When the enzyme is partially purified from embryos and larvae at different stages of development by sedimentation through a sucrose density gradient, its activity increases 3-fold during the first 12 h of pre-emergence development. This is followed by a slow decline during subsequent larval development. The similarity of this enzyme to other asymmetrical-pyrophosphohydrolases suggests that it did not evolve specifically to degrade the large yolk platelet store of Gp4G which is found in Artemia embryos, but that it probably serves the same general function in bis(5'-nucleosidyl) oligophosphate metabolism as in other cells.  相似文献   

12.
Diadenosine polyphosphates (ApnAs) act as extracellular signaling molecules in a broad variety of tissues. They were shown to be hydrolyzed by surface-located enzymes in an asymmetric manner, generating AMP and Apn-1 from ApnA. The molecular identity of the enzymes responsible remains unclear. We analyzed the potential of NPP1, NPP2, and NPP3, the three members of the ecto-nucleotide pyrophosphatase/phosphodiesterase family, to hydrolyze the diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), and diadenosine 5',5"'-P1,P5-pentaphosphate, (Ap5A), and the diguanosine polyphosphate, diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). Each of the three enzymes hydrolyzed Ap3A, Ap4A, and Ap5A at comparable rates. Gp4G was hydrolyzed by NPP1 and NPP2 at rates similar to Ap4A, but only at half this rate by NPP3. Hydrolysis was asymmetric, involving the alpha,beta-pyrophosphate bond. ApnA hydrolysis had a very alkaline pH optimum and was inhibited by EDTA. Michaelis constant (Km) values for Ap3A were 5.1 micro m, 8.0 micro m, and 49.5 micro m for NPP1, NPP2, and NPP3, respectively. Our results suggest that NPP1, NPP2, and NPP3 are major enzyme candidates for the hydrolysis of extracellular diadenosine polyphosphates in vertebrate tissues.  相似文献   

13.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 3-6) inhibited the protein kinase activity of homogeneous phorboid receptor. These nucleotides did not affect the phorboid binding activity. Ap4A competed for an ATP binding site on the phorboid receptor. Km for ATP was increased from 0.5 to 2 microM in the presence of 0.2 mM of Ap4A. KI was calculated to be approximately 0.1 mM. Ap4A-elicited inhibition of phorboid receptor kinase activity was independent of receptor concentration as well as of phosphoacceptor substrate concentration.  相似文献   

14.
The diadenosine 5',5'-P1,P4-tetraphosphate alpha,beta-phosphorylase (Ap4A phosphorylase), recently observed in yeast [Guaranowski, A., & Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547], is shown to be capable of catalyzing the synthesis of Ap4A from ATP + ADP, i.e., the reverse reaction of the phosphorolysis of Ap4A. The synthesis of Ap4A markedly depends on the presence of a divalent cation (Ca2+, Mn2+, or Mg2+). In vitro, the equilibrium constant K = ([Ap4A][Pi])/[(ATP][ADP]) is very sensitive to pH. Ap4A synthesis is favored at low pH, in agreement with the consumption of one to two protons when ATP + ADP are converted into Ap4A and phosphate. Optimal activity is found at pH 5.9. At pH 7.0 and in the presence of Ca2+, the Vm for Ap4A synthesis is 7.4 s-1 (37 degrees C). Ap4A phosphorylase is, therefore, a valuable candidate for the production of Ap4A in vivo. Ap4A phosphorylase is also capable of producing various Np4N' molecules from NTP and N'DP. The NTP site is specific for purine ribonucleotides (N = A, G), whereas the N'DP site has a broader specificity (N' = A, C, G, U, dA). This finding suggests that the Gp4N' nucleotides, as well as the Ap4N' ones, could occur in yeast cells.  相似文献   

15.
T4 RNA ligase catalyzes the synthesis of ATP beta,gamma-bisphosphonate analogues, using the following substrates with the relative velocity rates indicated between brackets: methylenebisphosphonate (pCH(2)p) (100), clodronate (pCCl(2)p) (52), and etidronate (pC(OH)(CH(3))p) (4). The presence of pyrophosphatase about doubled the rate of these syntheses. Pamidronate (pC(OH)(CH(2)-CH(2)-NH(2))p), and alendronate (pC(OH)(CH(2)-CH(2)-CH(2)-NH(2))p) were not substrates of the reaction. Clodronate displaced the AMP moiety of the complex E-AMP in a concentration dependent manner. The K(m) values and the rate of synthesis (k(cat)) determined for the bisphosphonates as substrates of the reaction were, respectively: methylenebisphosphonate, 0.26+/-0.05 mM (0.28+/-0.05 s(-1)); clodronate, 0.54+/-0.14 mM (0.29+/-0.05 s(-1)); and etidronate, 4.3+/-0.5 mM (0.028+/-0.013 s(-1)). In the presence of GTP, and ATP or AppCCl(2)p the relative rate of synthesis of adenosine 5',5'-P(1),P(4)-tetraphosphoguanosine (Ap(4)G) was around 100% and 33%, respectively; the methylenebisphosphonate derivative of ATP (AppCH(2)p) was a very poor substrate for the synthesis of Ap(4)G. To our knowledge this report describes, for the first time, the synthesis of ATP beta,gamma-bisphosphonate analogues by an enzyme different to the classically considered aminoacyl-tRNA synthetases.  相似文献   

16.
1. Phosphorolytic cleavage of Ap(4),A was demonstrated in cell-free extracts from two protozoan organisms, Euglena gracilis and Acanthamoeba castellanii. 2. A specific dinucleoside oligophosphate (DNOP) alpha, beta-phosphorylase which degrades substrates with formation of corresponding nucleoside 5'-diphosphate (NDP) as one of the reaction products was purified 625-fold from Euglena gracilis cells. 3. In addition to Ap(4)A, the phosphorylase degrades AP(3)A, Ap(5)A, Gp(4)G and one of phosphonate analogs, ApppCH(2)pA. The K(m) values for Ap(4), A and Ap(3) A are 27 and 25 micron, and relative velocities 100 and 14, respectively. The K(m) for phosphate is 0.5 mM. 4. Some anions (arsenate, chromate, molybdate and vanadate) can substitute for phosphate in the catalyzed reactions and in their presence the DNOPs yield corresponding nucleoside 5'-monophosphate as one of the reactions' product. The enzyme supports also an anion-dependent dephosphorylation of NDPs. 5. Molecular weight of the native Euglena phosphorylase is 30,000. Optimum pH for its activity is at 8.0 Divalent metal cations are essential for the phosphorolysis of DNOPs but are not for the NDP dephosphorylation mentioned.  相似文献   

17.
Diadenosine 5',5'"-P1,P4-tetraphosphate (Ap4A) has been detected in cysts and developing embryos of the brine shrimp Artemia in amounts 10(4)-10(6) times lower than that of the guanine analogue, Gp4G. The unexpectedly high level of Ap4A in dormant cysts of 2.37 pmol/10(6) cells can be reduced to 0.03 pmol/10(6) cells by decapsulation and storage in saturated NaCl. When development is reinitiated, the Ap4A content of the decapsulated embryos undergoes a rapid 125 -fold increase, reaching a maximum of 3.79 pmol/10(6) cells at the point of emergence when DNA replication begins. If replication is delayed by hypoxia, the Ap4A level is adjusted in order to reach the same maximum value when replication finally begins. As replication proceeds, the level of Ap4A declines again. Unlike mammalian cells, Ap4A in Artemia is less metabolically labile than ATP. These results are consistent with the suggested role of Ap4A in the initiation of DNA synthesis.  相似文献   

18.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

19.
Binding of adenosine(5')tetraphospho(5')adenosine (Ap4A) to histones of calf thymus was investigated by non-equilibrium dialysis. Histone H1 interacts with the dinucleotide via two strong sites and competes with Mg2+ ions. Intrinsic dissociation constants were 1.6 +/- 0.1 microM and 11 +/- 1 microM for zero and 0.4 mm-Mg2+ concentration respectively. Binding of poly(dT) and of other nucleotides to histone H1 was measured in an [3H]Ap4A-competition assay. The tendency to form complexes among nucleotides was highest for bisnucleoside tetraphosphates and decreased in the order poly(dT) greater than or equal to Ap4A approximately Gp4G greater than Ap4 much greater than Ap3A approximately Ap5A greater than or equal to ATP, GTP and dTTP. The co-ordination complex derived from Ap4A and cis-diammine-dichloroplatinum(II) was not reactive. The other histones of calf thymus also bound Ap4A with affinities decreasing in the order H4 approximately H3 greater than H1 greater than H2b greater than H2a. Ap4A stimulated the exchange of histone H1 between nucleosomes, but this effect was referred to ionic strength. It did not bind to assembled nucleosomes. Binding of Ap4A to histone H1 was decreased by salt (NaCl). At physiological saline concentration the value of the dissociation constant is commensurable with the value of the Ap4A concentration in the nucleus and thus indicative of complex-formation in vivo.  相似文献   

20.
1. A P1,P3-bis(5'-nucleosidyl)triphosphate pyrophosphohydrolase (Np3 Nase) has been partially purified from Artemia embryos. 2. The Np3 Nase has a native Mr of 115,000 and preferentially hydrolyses substrates of the form Np3 N. Relative rates of hydrolysis are Ap3A (Vrel = 1.0), Gp3G (Vrel = 0.71), Ap4A (Vrel = 0.08), Ap5A (Vrel = 0.09), Gp4G (Vrel = 0.3) and Gp5G (Vrel = 0.33). An NMP is always one of the products. 3. The Km values for Ap3A and Gp3G are 15 and 10 microM respectively. 4. Mg2+, Mn2+ and Ca2+ ions all stimulate the activity, while Zn2+, Co2+ and Ni2+ ions are inhibitory. 5. The activity of the Np3 Nase remains constant during pre-emergence development of encysted embryos but decreases slightly after hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号