首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible occurrence of sialyltransferase activity in the plasma membranes surrounding nerve endings (synaptosomal membranes) was studied, using calf brain cortex. The synaptosomal membranes were prepared by an improved procedure which provided: (a) a ?nerve ending fraction” consisting of at least 85% well-preserved nerve endings and containing only small quantities of membranes of intracellular origin; (b) a ?synaptosomal membrane fraction” carrying high amounts of authentic plasma membrane markers (Na+-K+ ATPase, 5′-nucleotidase, sialidase, gangliosides) with values of specific activity four to fivefold higher than those in the ?nerve ending fraction” and very small amounts of cerebroside sulphotransferase, marker of the Golgi apparatus, and of other markers of intracellular membranes (rotenone-insensitive NADH and NADPH: cytochrome c reductases), the specific activities of which were, respectively, 0.5- and 0.7-fold that in the ?nerve ending fraction”. Thus the preparation of synaptosomal membranes used had the characteristics of plasma membranes and carried a negligible contamination of membranes of intracellular origin. The distribution of sialyltransferase activity in the main brain subcellular fractions (microsomes; P2 fraction; nerve ending fraction; mitochondria) resembled most closely that of thiamine pyrophosphatase, the enzyme known to be linked to the Golgi apparatus and the plasma membranes and of acetylcholine esterase, the enzyme known to be linked to either intracellular or plasma membranes. The enrichment of sialyltransferase activity in the ?synaptosomal membrane fraction”, referred to the ?nerve ending fraction”, was practically the same as that exhibited by authentic plasma membrane markers. All this is consistent with the hypothesis that in calf brain cortex sialyltransferase has two different subcellular locations: one at the level of intracellular structures, most likely the Golgi apparatus (as described by other authors), the other in the synaptosomal plasma membranes. The basic properties (pH optimum, V/S, V/t and V/protein relationships) and detergent requirements of the synaptosomal membrane-bound sialyltransferase were established. The highest enzyme activities were recorded on exogenous acceptors, lactosylceramide and ds -fetuin. The Km values for CMP-NeuNAc were different using lactosylceramide and ds -fetuin as acceptor substrates (0.57 and 0.135 mm , respectively); the thermal stability of the enzyme acting on glycolipid acceptor was higher than that on the glycoprotein acceptor; the effect of detergents was different when using glycoprotein from glycolipid acceptors; no competition was observed between lactosylceramide and ds -fetuin. Thus the synaptosomal membranes carry at least two different sialyltransferase activities: one acting on lactosylceramide (and glycolipid acceptors), the other working on ds -fetuin (and glycoprotein acceptors). Ganglioside GM3 was recognized as the product of synaptosomal membrane-bound sialyltransferase activity working on lactosylceramide as acceptor substrate.  相似文献   

2.
Abstract— Total rat cerebral homogenate, with nuclei removed, yielded sialyltransferase activity peaks that were distinct from the protein distribution profile in a continuous sucrose density gradient. Marker enzyme studies and electron microscopic examinations on the gradient fractions suggested that most of the sialyltransferase activities were not associated with the synaptosomes.
The sialyltransferases appeared to be localized in the smooth microsomal membranes and the Golgi complex derivatives. The sialyltransferase activities were stimulated by non-ionic detergent mixture, Triton CF-54/Tween 80 (2/1, w/w), the effect being much more pronounced with exogenous substrates. The stimulatory effect was dependent on detergent concentration. With 1 mg detergent mixture per mg enzyme protein, the percent increases in enzyme activities with the different substrates were: endogenous glycolipids, 100; endogenous glycoproteins, 50; exogenous GM1a, 700; exogenous DS-fetuin, 230. The action of the nonionic detergents appears to be on a hydrophobic segment of the enzyme molecule, bearing the active site, which is buried in the membrane lipid bilayer. This was substantiated by the partial trypsin resistance of the sialyltransferase activities and the abolition of that resistance when trypsiniza-tion was performed in the presence of nonionic detergents. Furthermore, the sialyltransferase activities were markedly inhibited by organic solvents; and these inhibitory effects were inversely proportional to the solvent dielectric constants.  相似文献   

3.
An inhibitory effect due to broken cells is observed when sialyltransferase (CMP-N-acetylneuraminate:D-galactosyl-glycoprotein N-acetylneuraminyltransferase, EC 2.4.99.1) is measured with mixture of intact and homogenized lymphocytes. This intracellular inhibitory factor ib purified and characterized as CMP-N-acetylneuraminic acid (CMP-NeuNAc) by its behavior in various chromatographic and electrophoretic systems and by its susceptibility to CMP-NeuNAc hydrolase. This endogenous CMP-NeuNAc leads to an isotopic dilution of the exogenous labelled CMP-NeuNAc explaining the apparently lower activity of homogenate when compared to whole cells. Consequently, the radioactivity bound to acceptors may not be related to a known number of sialyl residues transferred, calling into question the validity of comparing the incorporation of [14C]NeuNAc by homogenate and whole cells in order to assign sialyltransferase activity to ectoenzyme. A new approach is developed to detect ectoglycosyltransferases with whole cells, taking into account that both intracellular enzymes and endogenous precursor may be introduced by the small percentage of broken cells.  相似文献   

4.
Free N-acetylsialic acid (NeuNAc) and CMP-N-acetylsialic acids (CMP-NeuNAc) are extracted from freeze-clamped or liquid nitrogen-frozen biological material by sequential extraction with cold acetone and acetone/water. [14C]NeuNAc and [14C]CMP-NeuNAc (20,000 dpm each) are added to the frozen material to correct for small losses occurring during the subsequent steps. NeuNAc and CMP-NeuNAc are separated by anion-exchange chromatography. CMP-NeuNAc is hydrolyzed with formic acid and again chromatographed on an ion-exchange column. The NeuNAc-containing fractions (representing free NeuNAc and CMP-NeuNAc) are converted to [14C]CMP-NeuNAc in the presence of [14C]CTP and CMP-NeuNAc synthetase. [14C]CMP-NeuNAc is separated by paper chromatography and the radioactivity measured by liquid scintillation counting. The amount of NeuNAc is calculated from a calibration curve obtained with NeuNAc standards. The small amounts of [14C]NeuNAc and [14C]CMP-NeuNAc added initially do not interfere with the final assay. The method gives reliable values down to 50 pmol/assay, but the sensitivity can be easily increased by a factor of 10. Recoveries, with NeuNAc and CMP-NeuNAc added to biological extracts, were 98.3 and 98.5% for NeuNAc and CMP-NeuNAc, respectively. With this method values of 61.2 ± 12.8 and 24.4 ± 5.2 nmol/g wet wt were found in rat liver for free NeuNAc and CMP-NeuNAc, respectively. Values for free NeuNAc found in human blood plasma were 600 ± 476 and 373 ± 180 pmol/g plasma for healthy persons and patients with breast cancer, respectively. Free CMP-NeuNAc could not be found in plasma.  相似文献   

5.
Prokaryotic derived probes that specifically recognize alpha-2,8-ketosidically linked polysialosyl units were developed to identify and study the temporal expression of these unique carbohydrate moieties in developing neural tissue (Vimr, E. R., McCoy, R. D., Vollger, H. F., Wilkison, N. C., and Troy, F. A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1971-1975). These polysialosyl units cap N-linked oligosaccharides of the complex-type on neural cell adhesion molecules (N-CAM). A Golgi-enriched fraction from 20-day-old fetal rat brain contains a membrane-associated sialyltransferase that catalyzes the incorporation of [14C]N-acetylneuraminic acid [( 14C]NeuNAc) from CMP-[14C] NeuNAc into polymeric products. At pH 6.0, 84 pmol of NeuNAc mg of protein-1 h-1 were incorporated. In sodium dodecyl sulfate-polyacrylamide gels, the major radiolabeled species migrated with a mobility expected for N-CAM. A bacteriophage-derived endoneuraminidase specific for polysialic acid was used to demonstrate that at least 20-30% of the [14C]NeuNAc was incorporated into alpha-2,8-linked polysialosyl units. This was confirmed by structural studies which showed that the endoneuraminidase-sensitive brain material consisted of multimers of sialic acid. The addition of a partially purified preparation of chick N-CAM to the membranous sialyltransferase stimulated sialic acid incorporation 3-fold. The product of this reaction was also sensitive to endoneuraminidase and contained alpha-2,8-linked polysialosyl chains, thus showing that N-CAM can serve as an exogenous acceptor for sialylation in vitro. Sialic acid incorporated into adult rat brain membranes was resistant to endoneuraminidase, indicating that the poly-alpha-2,8-sialosyl sialyltransferase activity is restricted to an early developmental epoch. It is recommended that the enzyme described here be designated CMP-NeuNAc:poly-alpha-2,8-sialosyl sialyltransferase and the trivial name poly-alpha-2,8-sialosyl sialyltransferase be adopted.  相似文献   

6.
Abstract— The pathway of biosynthesis of N -acetylgalactosamine-containing gangliosides in mouse neuroblastoma has been studied using NB41A cells grown in monolayer tissue culture. Cell-free enzyme preparations catalyzed the transfer of NeuNAc from CMP-NeuNAc to lactosylceramide (GL-2a), to form GM3. Asialo-GM2 was neither an acceptor nor a competitive inhibitor of the sialyltransferase (CMP-NeuNAc: GL-2a N-acetylneuraminyltransferase, EC 2.4.99.-) under a variety of experimental conditions. Enzyme preparations also contained an N -acetylgalactosaminyltransferase (UDP-GalNAc. GM3 N -acetylgalactosaminyltransferase, EC 2.4.1.-) which catalyzed the conversion of GM3 to GM2. No significant transfer of N -acetylgalactosamine to GL-2a could be demonstrated. The results of the glycosyltransferase assays support the concept that the first NeuNAc of brain gangliosides is introduced into GL-2a. The present data suggests that the occurrence of asialo-GM2 in NB41A cells under some culture conditions is a consequence of the catabolism of higher gangliosides.  相似文献   

7.
A rat brain Golgi sialyltransferase activity capable of the differentiation-dependent control of N-CAM sialylation state is described. The specific activity of Golgi sialyltransferase was found to be developmentally regulated with respect to both endogenous and exogenous protein acceptors, with a particular elevation on postnatal days 10-12 when the heavily sialylated or 'embryonic' form of N-CAM is re-expressed. The subsequent developmental decrease in activity was associated with a significant decrease in apparent Km for the CMP-NeuNAc substrate, but not for the asialofetuin exogenous acceptor, which could not be attributed to the temporal expression of an endogenous competitive inhibitor. The apparent Vmax remained constant for CMP-NeuNAc but was significantly reduced for asialofetuin. Sialyltransferase activity, which was optimal at pH 7.0-7.5, was also modulated by various cations. Zinc abolished enzyme function, in contrast to ferric ions which stimulated activity fourfold-sevenfold. The marked activation of the adult form of the enzyme by potassium and magnesium ions, together with the alterations in kinetic constants, suggested this activity to be distinct from that derived from postnatal day-12 tissue. The kinetics of [14C]sialic acid incorporation into immuno-precipitated N-CAM demonstrated the individual polypeptides to be sialylated, possibly by addition of polysialosyl units, in a developmental sequence. The presence of four distinct sialyltransferase activities was demonstrated by non-denaturing gel electrophoresis followed by solid-phase enzyme assay. These isoforms were temporally expressed during development, two being correlated with the postnatal reexpression of the 'embryonic' form of N-CAM.  相似文献   

8.
Incubation of culture supernatants from concanavalin A-stimulated guinea pig and rat lymphocytes with protein-free preparations of bovine brain gangliosides abolished their macrophage migration inhibitory factor (MIF) and macrophage activation factor (MAF) activity. The identity of the MIF/MAF-binding component(s) present in these glycolipid mixtures has yet to be established, but adsorption experiments using purified preparations of mono- (GM1, GM2, and GM3), di- (GD1a), and trisialogangliosides (GT1) were negative. Since these gangliosides account for over 90% of the glycolipid content in brain ganglioside mixtures it appears that the MIF-binding component(s) is present only in very small amounts. Treatment of guinea pig peritoneal macrophages with liposomes containing similar brain gangliosides or water-soluble glycolipids extracted from guinea pig macrophages enhanced their responsiveness to MIF. The enhanced response to MIF of liposome-treated macrophages was abolished by incubation of the treated macrophages with fucose-binding lectins (Lotus agglutinin and Ulex europaeus agglutinin I) before exposure to MIF, suggesting that the MIF-binding component donated by the liposomes may be a fucose-containing glycolipid. The possible role of glycolipids as surface receptors for MIF and MAF is discussed.  相似文献   

9.
Polysialic acid-containing glycoproteins consisting of extended chains of at least 55 sialyl residues (DP55, where DP represents degree of polymerization) are expressed on human neuroblastoma cells, CHP-134. The strategy used for detecting these unique carbohydrate structures was based on the use of two highly specific prokaryotic-derived enzyme systems and an anti-polysialosyl antibody (H.46). These probes were developed for the detection of polysialic acid on neural cell adhesion molecules (Troy, F. A., Hallenbeck, P. C., McCoy, R. D., and Vimr, E. R. (1987) Methods Enzymol. 138, 169-185). Proof for the presence of long chain multimers of sialic acid was based on two types of experiments which utilized: 1) a glycopeptide fraction of CHP-134 cells, labeled metabolically with D-[3H]GlcN and 2) a membrane fraction from CHP-134 cells which served as an exogenous acceptor of [14C] NeuNAc residues in an Escherichia coli K1 sialyltransferase assay. In vitro, this enzyme CMP-NeuNAc:poly-alpha-2,8-sialosyl sialyltransferase catalyzes the transfer of [14C]NeuNAc from CMP-[14C]NeuNAc to exogenous acceptors containing at least 3 sialyl residues. In the first series of experiments, endo-N-acetylneuraminidase (Endo-N), a bacteriophage-derived enzyme specific for hydrolyzing poly-alpha-2,8-sialosyl chains containing a minimum of 5 sialyl residues was used. Limit Endo-N digestion of the 3H-glycopeptides from the [3H] GlcN-labeled cells released short [3H]sialyl oligomers [( 3H]DP1-6) which were degraded to [3H]NeuNAc by exosialidase. Partial Endo-N digestion released a series of [3H]sialyl oligomers extending up to DP55. The longer (DP20-55) and intermediate sized (DP10-20) oligomers were isolated and converted to short oligomers ((3H]DP1-6) by retreating with Endo-N, thus confirming their identity as homo-oligomers of alpha-2,8-linked [3H]NeuNAc residues. In the second series of experiments, a membrane fraction of CHP-134 cells was radiolabeled in vitro with [14C]NeuNAc by E. coli K1 sialyltransferase. The membrane fraction had a major portion of radioactivity that was high Mr and polydisperse (Mr 100,000-250,000) as demonstrated in sodium dodecyl sulfate-polyacrylamide gels. Using Western blotting, pre-existing material of similar size was shown to react with antibody H.46.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Freeze-etch electron microscopy, a platinum shadowing technique, has been used to compare the lateral distribution of several gangliosides in bilayer model membranes by directly visualizing bound lectin molecules. In particular, GM1 and GD1a, major components of brain ganglioside, were studied in phase-separated mixtures of dipalmitoyl- and dielaidoylphosphatidylcholines exposed to Ricinus communis agglutinin and wheat germ agglutinin. The distribution of glycolipid showed evidence of microheterogeneity in that bound lectin tended to occur in clusters of several or more molecules. With GD1a as receptor such clusters were small and very uniformly distributed over the membrane surface. Somewhat larger, irregularly spaced clusters of up to a dozen lectin particles were more typical of membranes bearing GM1 and, in addition, there were occasional extensive patches of bound lectin coexisting with areas apparently devoid of glycolipid receptor in phase-separated mixtures of dipalmitoyl- and dielaidoylphosphatidylcholine. Gangliosides in the latter mixtures were not obviously influenced in their lateral distribution by the presence of coexisting fluid and rigid domains. These basic observations seem to extend to bilayer membranes containing mixtures of two gangliosides. The patterns of lectin binding were not grossly affected by incubation time or history of warming and cooling. This study was extended to bilayers of pure dipalmitoylphosphatidylcholine in expectation that the distinctive features characteristic of the Pβ′ phase of this lipid might accentuate any behavioural differences between GM1 and GD1a.GM1 was found to exist preferentially in the ‘trough’ regions between Pβ′ ripples, while GD1a showed no apparent preferential arrangement. Given that bound lectins adequately reflect glycolipid distribution in membranes, it would appear that structurally different glycolipids from the same host membrane can assume different distributions on the basis of interactions with defined lipid host matrices.  相似文献   

11.
Thon V  Lau K  Yu H  Tran BK  Chen X 《Glycobiology》2011,21(9):1206-1216
Pasteurella multocida (Pm) is a multi-species pathogen that causes diseases in animals and humans. Sialyltransferase activity has been detected in multiple Pm strains and sialylation has been shown to be important for the pathogenesis of Pm. Three putative sialyltransferase genes have been identified in Pm genomic strain Pm70. We have reported previously that a Pm0188 gene homolog in Pm strain P-1059 (ATCC 15742) encodes a multifunctional sialyltransferase (PmST1). We demonstrate here that while PmST1 prefers to use oligosaccharides as acceptors, PmST2 encoded by the Pm0508 gene homolog in the same Pm strain is a novel glycolipid α2-3-sialyltransferase that prefers to use lactosyl lipids as acceptor substrates. PmST2 and PmST1 thus complement each other for an efficient synthesis of α2-3-linked sialosides with or without lipid portion. In addition, β1-4-linked galactosyl lipids are better PmST2 substrates than β1-3-linked galactosyl lipids. PmST2 has been used successfully in the preparative scale synthesis of sialyllactosyl sphingosine (lyso-GM3), which is an important glycolipid and an intermediate for synthesizing more complex glycolipids such as gangliosides.  相似文献   

12.
S K Basu  R L Whisler  A J Yates 《Biochemistry》1986,25(9):2577-2581
The effects of phytohemagglutinin (PHA) stimulation on the activities of sialyltransferase 1 (SAT-1), and sialyltransferase 3 (SAT-3), in human lymphocytes were investigated in vitro. For SAT-1 and SAT-3, respectively, the apparent Km values with variable CMP-NeuAc concentrations were 0.19 and 0.015 mM and with variable LacCer were 0.075 and 0.17 mM. Progressive increases in the activities of SAT-1 and SAT-3 were detected in lymphocytes stimulated with PHA, whereas no increase was observed in control lymphocytes incubated in culture medium alone. These increased activities occurred within 18-36 h of incubation and preceded optimum lymphocyte proliferation. Intact lymphocytes were needed for the lectin-stimulated increase of sialyltransferase activities because neither concanavalin A nor phytohemagglutinin added to the broken cell preparation modulated SAT-1 activity. The glycolipid products formed as a result of these enzymatic reactions in the presence of endogenous and exogenous acceptors were tentatively identified by thin-layer chromatography and autofluorography. The addition of exogenous LacCer to the SAT-1 assay resulted in the radiolabeling of a small amount of ganglioside GM1b (3.4%), but GM3 was the major labeled product (96%). When GgOse4Cer was added to the SAT-3 assay, 32% GM3 and 24.6% GM1b were detected while 44% consisted of glycolipids not labeled in assays performed without exogenous acceptors. Of the radioactivity transferred to endogenous acceptors, 81.3% was in GM3 and 14.6% in GM1b. These results demonstrate that the modulation of sialyltransferase activity occurs earlier than cellular activation.  相似文献   

13.
Retinoic acid (RA) plays an important role in differentiation stage in which it also influences glycoconjugate metabolism. Previous work in our laboratory has shown that treatment with RA modifies glycolipid synthesis and distribution in total Xenopus embryos during development. In this study we have investigated the activity of the following anabolic enzymes involved in glycolipid biosynthesis: sialyltransferase-1 (SAT-1), GM3(beta1, 4)-N-acetylgalactosaminyltransferase (GalNAcT-1) and LacCer(beta1, 3)N-acetylglucosaminyltransferase (GlcNAcT-1). These enzymes are located at the branching point of lactosylceramide (Lc(2)) metabolism. Enzyme activities were assayed after treatment with different doses of RA added exogenously to the medium during the first 7 days of Xenopus embryo development. Our results show that RA activates GlcNAcT-1, the enzyme that drives Lc(2)to the glycolipids of the lacto-series, and SAT-1 that inserts Lc(2)in the ganglio-series pathway. These data support our previous analysis of glycolipid pattern in Xenopus embryos after RA treatment (Rizzo et al., 1995;Cell Biol Int19: 895-901) indicating a possible correlation between the distribution of glycolipids and the enzymes involved in their metabolism.  相似文献   

14.
CMP-sialic acid:lactosylceramide sialyltransferase is induced in HeLa cells by butyrate which also causes the cells to undergo morphological changes including the extension of neurite-like processes. The activity of this enzyme is more than 20-fold higher in butyrate-treated cells than in cells grown without this short chain fatty acid. In vitro synthesis of hematoside from endogenous acceptors is also elevated in cells grown in the presence of butyrate. The levels of induced enzyme activity are influenced by the pH of the culture medium, being higher in more acidic cultures, but are not affected markedly by varying the cell density over a wide range. Detergent is required for in vitro sialyltransferase activity, and this activity is stimulated almost fivefold by cardiolipid. The optimum pH for in vitro activity is 6.0 and the apparent Km value for lactosylceramide is 3.5 × 10?5m. Although there are several sialyltransferase activities in HeLa cells, the induced enzyme is specific for lactosylceramide.  相似文献   

15.
Abstract– Experimental rat neural tumors in offspring were induced transplacentally by a single injection of a chemical carcinogen, ethylnitrosourea, 20mg/kg body wt, in the tail vein of the mother. The ganglioside content and pattern in these tumors and the normal tissues from which the tumors originated are described. The ganglioside content in tumors was reduced, on wet tissue weight basis, compared to normal control. However, there was no significant difference of ganglioside content on dry weight or protein basis. Altered ganglioside composition was found in most of the neural tumors. In central nervous system tumors, there was some increase in GM3 and GT1b′ (nomenclature according to Svennerholm , 1963), a marked decrease in GM1 and some decrease in GD1a, but no apparent loss in GD1b. Extreme simplification of ganglioside pattern was seen in tumors originated from peripheral nervous system. Large accumulation of GM3 with concomitant loss of all the higher gangliosides was seen. GM3 from neurinomas as well as from normal gray matter was isolated and characterized. GM3 from neurinomas separated into two bands on thin layer chromatographic plates. Both these GM3 bands had identical sphingosine and carbohydrate composition but differed in their fatty acid composition. The fast moving band had 77% of the total fatty acids as C20:0 or longer chain while the slow moving band had only 22% of the long chain fatty acids. Normal gray matter GM3 had one major band containing 82% of and only 17% of the fatty acids as C20:0 or higher. It is suggested that in the tumor cells either the specificity of the enzyme cytidine monophosphate-N-acetyl neuraminic acid: ceramide dihexoside sialyltransferase for C18.0 fatty acid containing glycolipid was altered or that the compartmentation of precursor pools for the simpler glycolipids present in normal tissue did not exist in transformed cells.  相似文献   

16.
Radioactive gangliosides, N-[14C]-acetylneuraminylgalactosylglucosylceramide ([14C]GM3) and N- [14C]-acetylneuraminylgalactosyl-N-acetylgalactosaminyl- [N-acetylneuraminyl]-galactosylglucosylceramide ([14C]GD1a), were synthesized from CMP-[14C]sialic acid and the appropriate precursor glycolipid using specific sialyltransferase activities. These compounds were isolated and used as substrates to assay sialidase activity in HeLa cells. Although sodium butyrate added to the culture medium increased GM3 biosynthesis in HeLa cells, sialidase activity, as well as that of other glycohydrolases, was the same in control and butyrate-treated HeLa cells. The same sialidase activity appeared to hydrolyze both [14C]GM3 and [14C]GD1a, but not fetuin; the enzyme had a pH optimum of 5.0 and a Km of 75 μm for the ganglioside substrates. Although the cells contained a high sialidase activity (4–7 nmol/mg of protein/h) and could bind exogenously added [14C]GM3, no “ecto”-sialidase activity would be detected in intact cells under conditions where a close to physiological pH is maintained. The results indicate that ganglioside sialidase is not involved directly in the morphological and biochemical differentiation induced in HeLa cells by exposure to sodium butyrate.  相似文献   

17.
—The activity of brain membrane-bound neuraminidase on endogenous and exogenous substrates was comparatively studied in various animals (rat, chicken, rabbit, pig, calf and human). The maximum rate of hydrolysis of endogenous substrates by membrane-bound neuraminidase (using a crude preparation of the enzyme) was different in the various animals (from 0·05 to 0·73 units, referred to 1 mg protein) and was obtained under similar but not identical optimum conditions (pH from 4·1 to 5·1; requirement or not of Triton X-100). The maximum degree of hydrolysis of endogenous substates was also different (from 15 to 27 nmol released NeuNAc/mg protein) and was obtained within different incubation periods (from 2 to 18 h). It corresponded (in rabbit, calf, human brain only), or not, to the actual exhaustion of the endogenous substrates. The endogenous substrates were recognized as both gangliosides and sialoglycoproteins. The extent of hydrolysis of sialoglycoproteins varied from 1·5% in rabbit to 15·6% in chicken brain; the hydrolysis of gangliosides (ranging from 14·1% in pig to 53·7% in rabbit brain) reached only in some animals (rabbit, calf, human) the complete transformation of major oligosialogangliosides into the neuraminidase resistant monosialoganglioside GMI. Upon addition of exogenous substrates (sialyl-lactose, ganglioside GD1a, brain sialopeptides, ovine submaxillary mucin) the actual rate of liberation of total NeuNAc (from both endogenous and exogenous substrates) considerably exceeded, although at a different extent (depending on the animal and on the added substrate used) the rate of hydrolysis of sole endogenous substrates. The possibility of an accurate assay of brain membrane-bound neuraminidase in a crude enzyme preparation is evaluated and guidelines for the assay procedure suggested.  相似文献   

18.
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed.  相似文献   

19.
The gene encoding for the CMP-NeuNAc synthetase enzyme of Neisseria meningitidis group B was cloned by complementation of a mutant of Escherichia coli defective for this enzyme. The gene (neuA) was isolated on a 4.1-kb fragment of meningococcal chromosomal DNA. Determination of the nucleotide sequence of this fragment revealed the presence of three genes, termed neuA, neuB, and neuC, organized in a single operon. The presence of a truncated ctrA gene at one end of the cloned DNA and a truncated gene encoding for the meningococcal sialyltransferase at the other confirmed that the cloned DNA corresponded to region A and part of region C of the meningococcal capsule gene cluster. The predicted amino acid sequence of the meningococcal NeuA protein was 57% homologous to that of NeuA, the CMP-NeuNAc synthetase encoded by E. coli K1. The predicted molecular mass of meningococcal NeuA protein was 24.8 kDa, which was 6 kDa larger than that formerly predicted (U. Edwards and M. Frosch, FEMS Microbiol. Lett. 96:161-166, 1992). Purification of the recombinant meningococcal NeuA protein together with determination of the N-terminal amino acid sequence confirmed that this 24.8-kDa protein was indeed the meningococcal CMP-NeuNAc synthetase. The predicted amino acid sequences of the two other encoded proteins were homologous to those of the NeuC and NeuB proteins of E. coli K1, two proteins involved in the synthesis of NeuNAc. These results indicate that common steps exist in the biosynthesis of NeuNAc in these two microorganisms.  相似文献   

20.
Summary Brain from mature rats has been shown previously to contain a natural inhibitor of rat brain sialyltransferase I (CMP-sialic acid: lactosylceramide sialyltransferase activity). This same inhibitor preparation was effective against sialyltransferase I and a second sialyltransferase activity from different lines of cultured cells. Cardiolipin which stimulates sialyltransferase I activity in cultured cells apparently was not required for inhibition. Inhibition was specific for sialyltransferase activities while a third ganglioside biosynthetic enzyme, UDP-gal: glucosyl-ceramide galactosyltransferase activity, was not inhibited. Inhibition of sialyltransferase I was linear with time, heat-resistant, and increased with inhibitor concentration.Gangliosides are sialic-acid containing glycosphingolipids found in brain as well as extraneural tissues and cultured cells t,2. Although the functions of gangliosides are unknown, they appear to play a role in morphological differentiation3 sensory and visual stimulation 4 and as receptor for cholera toxin5–8 and possibly thyroid stimulating hormone9. The monosaccharide units are added to the elongating oligosaccharide chain of the gangliosides in step-wise fashion and different glycosyltransferases catalyze each addition10,11. The activities of these enzymes have been observed to change during development12,14 malignant transformation13 and morphological differentiation3.Although little is known about the regulation of ganglioside synthesis, a natural inhibitor of CMP-AcNeu: GL-2 sialyltransferase (sialyltransferase I) from rat brain has been described14,15. As the inhibitor activity increased with the age of the animal, the same authors suggested that it may regulate the biosynthetic pathway of gangliosides. In this paper, the effects of the rat brain inhibitor on the activities of ganglioside biosynthetic enzymes from several cultured cell lines are described.Abbreviations AcNeu N-acetylneuraminic acid - GL1 glucosylceramide - GL-2 lactosylceramide - GM3 Nacetylneuraminylgalactosylglucosylceramide - GM1 gal actosyl-N-acetylgalactosaminyl-(N-acetylneuraminylgalactosylglucosylceramide - GD1a Nacetylneuraminylgalactosyl-N-acetylgalactosaminyl-(Nacetylneuraminyl)-galactosylglucosylceramide. DR. DUFFARD was a recipient of a Fogarty Center Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号