首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dishevelled activates Ca2+ flux,PKC, and CamKII in vertebrate embryos   总被引:1,自引:0,他引:1  
Wnt ligands and Frizzled (Fz) receptors have been shown to activate multiple intracellular signaling pathways. Activation of the Wnt-beta-catenin pathway has been described in greatest detail, but it has been reported that Wnts and Fzs also activate vertebrate planar cell polarity (PCP) and Wnt-Ca2+ pathways. Although the intracellular protein Dishevelled (Dsh) plays a dual role in both the Wnt-beta-catenin and the PCP pathways, its potential involvement in the Wnt-Ca2+ pathway has not been investigated. Here we show that a Dsh deletion construct, XDshDeltaDIX, which is sufficient for activation of the PCP pathway, is also sufficient for activation of three effectors of the Wnt-Ca2+ pathway: Ca2+ flux, PKC, and calcium/calmodulin-dependent protein kinase II (CamKII). Furthermore, we find that interfering with endogenous Dsh function reduces the activation of PKC by Xfz7 and interferes with normal heart development. These data suggest that the Wnt-Ca2+ pathway utilizes Dsh, thereby implicating Dsh as a component of all reported Fz signaling pathways.  相似文献   

3.
Heparin binding EGF-like growth factor (HB-EGF), encoded by the Hegfl gene, is considered as an important mediator of embryo-uterine interactions during implantation in mice. However, it is unknown whether HB-EGF is important for implantation in species with different steroid hormonal requirements. In mice and rats, maternal ovarian estrogen and progesterone (P(4)) are essential to implantation. In contrast, blastocyst implantation can occur in hamsters in the presence of P(4) alone. To ascertain whether HB-EGF plays any role in implantation in hamsters, we examined the expression, regulation and signaling of HB-EGF in the hamster embryo and uterus during the periimplantation period. We demonstrate that both the blastocyst and uterus express HB-EGF during implantation. Hegfl is expressed solely in the uterine luminal epithelium surrounding the blastocyst prior to and during the initiation of implantation. Hypophysectomized P(4)-treated pregnant hamsters also showed a similar pattern of implantation-specific Hegfl expression. These results suggest that uterine Hegfl expression at the implantation site is driven by either signals emanating from the blastocyst or maternal P(4), but not by maternal estrogen. However, in ovariectomized hamsters, uterine induction of Hegfl requires the presence of estrogen and activation of its nuclear receptor (ER), but not P(4). This observation suggests an intriguing possibility that an estrogenic or unidentified signal from the blastocyst is the trigger for uterine HB-EGF expression. An auto-induction of Hegfl in the uterus by blastocyst-derived HB-EGF is also a possibility. We further observed that HB-EGF induces autophosphorylation of ErbB1 and ErbB4 in the uterus and blastocyst. Taken together, we propose that HB-EGF production and signaling by the blastocyst and uterus orchestrate the 'two-way' molecular signaling to initiate the process of implantation in hamsters.  相似文献   

4.
Parthenogenetic embryos are invariably lost in mid-gestation, possibly due to the lack of the paternal genome and the consequent induction of aberrant gene expression. Wnt signaling is essential for embryonic development; however, the studies of this pathway in porcine parthenogenetic embryos have been limited. Here, the role of Wnt signaling in porcine parthenogenetic embryos was studied. In vivo embryos were used as controls. Single cell quantitative real-time PCR showed that Wnt signaling was down-regulated in porcine parthenogenetic embryos. Furthermore, immunofluorescence staining and real-time PCR demonstrated that porcine parthenogenetic embryo development was largely unaffected by the inhibition of Wnt signaling with IWP-2, but blastocyst hatching and trophectoderm development was blocked. In addition, parthenogenetic blastocyst hatching was improved by the activation of Wnt signaling by BIO. However, the developmental competency of porcine embryos, including blastocyst hatching, was impaired and apoptosis was induced upon the excessive activation of Wnt signaling. These findings constitute novel evidence that Wnt signaling is important for porcine pre-implantation development and that its down-regulation may lead to the low hatching rate of porcine parthenogenetic blastocysts.  相似文献   

5.
Blastocyst implantation and placentation require molecular and cellular interactions between the uterine endometrium and blastocyst trophectoderm. Previous studies showed that histamine produced in the mouse uterine luminal epithelium interacts with trophoblast histamine type-2 receptors (H2) to initiate blastocyst implantation. However, it is unknown whether similar histamine activity is operative in humans. Using a human cell line (HTR-8/SVneo) derived from first-trimester cytotrophoblasts that expresses both histamine type-1 receptor (H1) and H2, we found that histamine promotes cytotrophoblast invasiveness specifically through activation of H1. Stimulation of H1 in human cytotrophoblasts by histamine induced intracellular Ca2+ (Ca(2+)i) transients by activating phospholipase C and the inositol trisphosphate pathway. The enhanced invasion induced by histamine was blocked by pretreatment with H1 antagonist or by chelation of Ca(2+)i. These findings suggest possible differences between rodents and humans in histamine signaling to the trophoblast.  相似文献   

6.
7.
Embryo implantation is a highly orchestrated process that involves blastocyst-uterine interactions. This process is confined to a defined interval during gestation referred to as the “window of embryo implantation receptivity”. In mice this receptive period is controlled by ovarian estrogen and involves a coordination of blastocyst adhesion competence and uterine receptivity. Mechanisms coordinating the acquisition of blastocyst adhesion competence and uterine receptivity are largely unknown. Here, we show that ovarian estrogen indirectly regulates blastocyst adhesion competence. Acquisition of blastocyst adhesion competence was attributed to integrin activation (e.g. formation of adhesion complexes) rather than de novo integrin synthesis. Osteopontin (OPN) was identified as an estrogen-dependent uterine endometrial gland secretory factor responsible for activating blastocyst adhesion competence. Increased adhesion complex assembly in OPN-treated blastocysts was mediated through focal adhesion kinase (FAK)- and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways. These findings define for the first time specific regulatory components of an estrogen-dependent pathway coordinating blastocyst adhesion competence and uterine receptivity.  相似文献   

8.
目的:分析Wnt-beta-catenin 信号通路在骨肉瘤发展中的作用和对化疗效果的影响。方法:采用免疫组织化学、实时定量PCR 与Western blotting 比较人成骨细胞(human fetal osteoblasts,hFOB)和骨肉瘤(human OS,Saos2)细胞及人骨肉瘤细胞样本中 Wnt-beta-catenin信号通路相关分子的表达,比较hFOB和Saos2 细胞的表达差异。采用萤光素酶实验观察Wnt-beta-catenin、Notch、Hh 信号通路对氨甲喋呤(methotrexate,MTX)疗效的调控。结果:同hFOB细胞相比该通路的主要分子包括:Wnt3(5.5 倍)、beta-catenin (5.3 倍)、LEF1(7.6 倍),在Saos2细胞中表达明显上调。Western blotting 分析表明总beta-catenin 以及活化beta-catenin 的表达都升高。 MTX 处理后诱导了Saos2 细胞凋亡和坏死。对Wnt-beta-catenin、Notch、Hh 信号通路的化学抑制也能够诱导细胞死亡, Wnt-beta-catenin抑制剂更为明显。结论:采用小分子/ 化合物来抑制Wnt-茁-catenin 和Notch 信号,并同目前常用的OS药物化疗联 合使用,对于复发和转移的患者,有望改善患者的生存期。  相似文献   

9.
10.
11.
Physiological and molecular determinants of embryo implantation   总被引:1,自引:0,他引:1  
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo–uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.  相似文献   

12.
13.
Careful regulation of the Wnt-Beta-catenin signaling pathway is critical to many aspects of development and cancer. Casein kinase Iepsilon is a Wnt-activated positive regulator of this pathway. Members of the Dishevelled family have been identified as key substrates of casein kinase I (CKI). However, the specific sites phosphorylated in vivo by CKI and their relative importance in the physiologic regulation of these proteins in the canonical Wnt-beta-catenin signaling pathway remain unclear. To address this question, recombinant mouse Dishevelled (mDvl-1) was phosphorylated by CKIin vitro and phosphorylation sites were identified by MS. CKI phosphorylation of mDvl-1 at two highly conserved residues, serines 139 and 142, was observed by MS and confirmed by phosphopeptide mapping of in vivo phosphorylated protein. Phosphorylation of these sites is dependent on casein kinase I epsilon activity in vivo. Phenotypic analysis of mutant mDvl-1 indicates that phosphorylation of these sites stimulates the Dvl-activated beta-catenin-dependent Wnt signaling pathway in both cell culture and in Xenopus development. Casein kinase I epsilon is a Wnt-regulated kinase, and regulated phosphorylation of Dvl allows fine tuning of the Wnt-beta-catenin signaling pathway.  相似文献   

14.
Beta-catenin, the mammalian homolog of Drosophila armadillo protein, was first identified as a cadherin-associated protein at cell-cell junctions. Another function of beta-catenin is the transduction of cytosolic signals to the nucleus in a variety of cellular contexts, which usually are elicited by the active form of beta-catenin. The aim of the present study was to examine the potential role of active beta-catenin in the mouse embryo and uterus during embryo implantation. Active beta-catenin was detected differentially in mouse embryos and uteri during the peri-implantation period. Aberrant activation of beta-catenin by LiCl, a well-known glycogen synthase kinase-3 inhibitor, significantly inhibited blastocyst hatching and subsequent adhesion and outgrowth on fibronectin. Results obtained from pseudopregnant and implantation-delayed mice imply an important role for implanting blastocysts in the temporal and spatial changes of active beta-catenin in the uterus during the window of implantation. Collectively, these results suggest that the beta-catenin signaling pathway is inhibited in both blastocyst and uterus during the window of implantation, which may represent a new mechanism to synchronize the development of preimplantation embryos and differentiation of the uterus during this process.  相似文献   

15.
The PI3K/Akt signal transduction pathway is a well-known mediator of growth promoting and cell survival signals. While the expression and function of this pathway have been documented during early and late stages of the reproductive process, currently, there is no evidence demonstrating either the presence or function of the PI3K/Akt pathway in murine preimplantation embryos. We found, using confocal immunofluorescent microscopy and Western blot analysis, that the p 85 and p110 subunits of PI3K and Akt are expressed from the 1-cell through the blastocyst stage of murine preimplantation embryo development. These proteins were localized predominantly at the cell surface from the 1-cell through the morula stage. At a blastocyst stage, both PI3K and Akt exhibited an apical staining pattern in the trophectoderm cells. Interestingly, phosphorylated Akt was detected throughout murine preimplantation development, and its presence at the plasma membrane is a reflection of its activation status. Inhibition of Akt activity had significant effects on the normal physiology of the blastocyst. Specifically, inhibition of this pathway resulted in a reduction in insulin-stimulated glucose uptake. In addition, inhibiting Akt activity resulted in a significant delay in blastocyst hatching, a developmental step facilitating implantation. Finally, we established the presence of this pathway in trophoblast stem (TS) cells, a potentially useful in vitro model to study this signaling cascade. Taken together, these data are the first to demonstrate the presence and function of the PI3K/Akt pathway in mammalian preimplantation embryos.  相似文献   

16.
Embryo implantation is a complicated event that relies on two critical factors: the competent blastocyst and the receptive uterus. Successful implantation results from tight coordination of these two factors. The maternal hormone environment of the uterus and molecular cross‐talk between the embryo and uterine tissue play pivotal roles in implantation. Here we showed that regulator of G‐protein signaling 2 (RGS2), a member of ubiquitous family of proteins that regulate G‐protein activation, plays an important role in embryo implantation by interfering in the cross‐talk between the embryo and uterine tissue. RGS2 expression increased during the implantation process, and was higher in the implant site than at the nonimplantation site. Meanwhile, ovariectomized (OVX) mice exhibited higher expression of RGS2 in the uterus. Exogenous 17β‐estradiol and progesterone in OVX mice downregulated the expression of RGS2. Treatment with exogenous 17β‐estradiol alone caused uterine RGS2 messenger RNA levels of OVX mice to return to those of normal female mice; when these mice were treated with progesterone or 17β‐estradiol plus progesterone, RGS2 levels rose. Downregulation of Rgs2 by small interfering RNA in an in vitro coculture system of decidualized endometrial stromal cells and blastocysts inhibited blastocyst outgrowth by restricting trophoblast spreading, suggesting a mechanism by which RGS2 regulates embryo implantation.  相似文献   

17.
18.
Pregnancy loss is a serious social and medical issue, with one important cause associated with aberrant embryo implantation during early pregnancy. However, whether and how the process of embryo implantation is affected by environmental factors such as stress-induced sympathetic activation remained elusive. Here we report an unexpected, transient effect of β(2)-adrenoreceptor (β(2)-AR) activation (day 4 postcoitus) in disrupting embryo spacing at implantation, leading to substantially increased midterm pregnancy loss. The abnormal embryo spacing could be prevented by pretreatment of β(2)-AR antagonist or genetic ablation of β-AR. Similar β(2)-AR activation at day 5 postcoitus, when implantation sites have been established, did not affect embryo spacing or pregnancy outcome, indicating that the adverse effect of β(2)-AR activation is limited to the preimplantation period before embryo attachment. In vitro and in vivo studies demonstrated that the transient β(2)-AR activation abolished normal preimplantation uterine contractility without adversely affecting blastocyst quality. The contractility inhibition is mediated by activation of the cAMP-PKA pathway and accompanied by specific down-regulation of lpa3, a gene previously found to be critical for uterine contraction and embryo spacing. These results indicated that normal uterine contraction-mediated correct intrauterine embryo distribution is crucial for successful ongoing pregnancy. Abnormal β(2)-AR activation at early pregnancy provided a molecular clue in explaining how maternal stress at early stages could adversely affect the pregnancy outcome.  相似文献   

19.
Eggs differ widely in their ability to develop into an embryo. To address this characteristic, the concept of developmental competency has been coined, defined as the ability or potential of an oocyte to undergo maturation, fertilization and development to blastocyst stages or live offspring. Developmental competency is acquired progressively during folliculogenesis and is linked to follicular size. In an effort to understand the molecular changes underlying differences in competency we compared oocytes derived from large follicles (>or=5mm) to those from small follicles (相似文献   

20.
The mechanisms by which synchronized embryonic development to the blastocyst stage, preparation of the uterus for the receptive state, and reciprocal embryo-uterine interactions for implantation are coordinated are still unclear. We show in this study that preimplantation embryo development became asynchronous in mice that are deficient in brain-type (CB1) and/or spleen-type (CB2) cannabinoid receptor genes. Furthermore, whereas the levels of uterine anandamide (endocannabinoid) and blastocyst CB1 are coordinately down-regulated with the onset of uterine receptivity and blastocyst activation prior to implantation, these levels remained high in the nonreceptive uterus and in dormant blastocysts during delayed implantation and in pregnant, leukemia inhibitory factor (LIF)-deficient mice with implantation failure. These results suggest that a tight regulation of endocannabinoid signaling is important for synchronizing embryo development with uterine receptivity for implantation. Indeed this is consistent with our finding that while an experimentally induced, sustained level of an exogenously administered, natural cannabinoid inhibited implantation in wild-type mice, it failed to do so in CB1(-/-)/CB2(-/-) double mutant mice. The present study is clinically important because of the widely debated medicinal use of cannabinoids and their reported adverse effects on pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号